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Background 

• The SuperDARN radars detect echoes from  
continuously fluctuating ionospheric plasma, 
so the backscatter data represent a random 
signal which characterised by statistical 
parameters (mean, variance, etc.). The HF 
radar data are also subject to different kinds of 
external noise and interference.  

• Both sets of factors contribute to errors in 
estimating ionospheric plasma parameters. 
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• The existing data processing routine, FITACF, 

deals with some of these factors. However, it 

currently produces unrealistically small velocity 

errors ~0.1 m/s. In addition, there is a small but 

distinct population of echoes characterised by very 

large errors of ~40,000 m/s. 

• In order to improve this situation, we need to 

analyse what FITACF is actually doing and, if 

necessary, to go back to the basic statistics. 

Background & problem formulation (cont.) 
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SuperDARN ACF 

SuperDARN emits a sequence 

of unevenly spaced pulses that 

are combined into different 

ACF time lags and averaged .  

 

It is done to resolve the 

conflicting requirements 

imposed on the sampling rate 

due to the desired ranges of 

Doppler shift and spatial 

coverage. 
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SuperDARN ACF 

• A complex ACF is calculated for each beam-range cell (range 

gate) 

• Real part is calculated as a normal ACF 

 

 

• Imaginary part results from correlating the signal with its Hilbert 

transform (all spectral components are shifted by 90 deg): 
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Why to average? 

• ACF averaging decreases incoherent 

contribution from the cross-range interference 

(CRI) which is an intrinsic feature of multi-

pulse radars (see FITACF tutorial by K.Baker). 

• HF backscatter itself represents a random signal 

so an accurate estimate of its parameters also 

requires decent averaging to reduce statistical 

uncertainty   1/N1/2.  
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SuperDARN ACF 
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SuperDARN velocity 

• SuperDARN velocity measurements assume a 

uniform plasma drift within the scattering 

volume (range gate). 

• In this case, the ACF phase represents a linear 

function of the time lag, and the line-of-sight 

velocity can be estimated from the phase 

derivative over the time lag. 
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SuperDARN velocity (cont.) 
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Ideally, velocity can be 

estimated from a single 

ACF lag, but… 



SuperDARN velocity (cont.) 

• In reality, the phase 

fluctuates and introduces 

uncertainty in determining 

the slope b. 

• It becomes necessary to 

estimate an average slope  

• In FITACF, this is done by 

fitting a linear model to φ(τ). 
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Phase fitting 

• Fitting is done by minimising a weighted sum of measured 

phase deviations from the linear model  () = b (e.g. 

Numerical Recipes, Ch. 15.2 ), 

 

 

 

 

 

– nlag is the number of lags (degrees of freedom, DoF) 

–  i is the phase variance at the ith lag 
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Phase fitting (cont.) 

• In our case, we can obtain an analytic solution: 

 

 

 

 

 

 

SuperDARN Workshop, 26-31/05/2013, 

Moose Jaw, Saskatchewan, Canada 

 

 









lag

lag

n

i

ii

n

i

iii

b
b

1

22

1

2

2

0










29/05/2013 13 



Fitting errors 

• Slope fitting errors can be estimated by 

propagation of the phase errors 

 

 

 

 

• Importantly, a larger number of lags (degrees 

of freedom) should lead to smaller errors 
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Assumed phase statistics 
• To proceed further, we need to know . In the current data 

processing package, FITACF, some ad hoc assumption have been 
made about the phase variance (White Paper by K. Baker and G. 
Blanchard). It was assumed that the phase variance is inversely 
proportional to the ACF power at a given lag, 

 

 

 

Here ‹P› is the average ACF power and ‹φ › is the unknown effective 
phase variance 

• This assumption seems qualitatively reasonable, because with 
decreasing P the relative contribution from statistical power 
fluctuations to   should increase  
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FITACF velocity 

• Then the expression for the fitted velocity 

becomes  

 

 

 

• Importantly, the unknown ‹φ › is not required 

here. 
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Fitting errors 

• A linear relation between 
phase and velocity makes 
it easy to convert slope 
errors into velocity errors 

 

 

• However, estimation of 
the slope variance 
requires knowledge of 
the effective phase 
variance, <>, which is 
not a trivial thing. 
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FITACF phase variance 

• In FITACF, it is estimated directly from the measured phase 

deviations as a power-weighted average of the phase deviation 

at different lags:  

 

 

 

 

Here, the nlag/(nlag – 1) factor reflects a decrease in the number of 

degrees of freedom due to one free (fitted) parameter, the slope. 
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Finally, FITACF velocity “error” 

• Propagation of errors gives us the respective 

velocity error:  
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Contemporary FITACF summary 

• This is what we have now.  

• A close look at the code revealed that there was a 
missing term of sqrt(Nlag), which led to very low error 
estimates.  

• In addition, a “bad quality slope” flag 9999 is 
interpreted as valid data generating very large error 
values ~40000 m/s. 

• These errors can be easily fixed, but we still need to 
know how realistic the implemented assumptions are.  

• In order to achieve this, we need a more in-depth 
analysis supplied by realistic simulations, where we can 
compare a known input with measured output. 
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Theoretical phase variance 

• Now we will go a step further and see what the theoretical 

RMS phase variance is. According to Bendat & Piersol 

(Random data analysis and Measurement Procedures, John 

Wiley & Sons, 2000), it is: 

 

 

 

• Here N is the number of averages. Importantly, it also depends 

on the magnitude of the correlation coefficient at a given lag,  
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Theoretical phase variance (cont.) 

• The variance increases with de-correlation, 

from zero to infinity 
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Illustrations for exponential decay 
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Comparison with FITACF  

The theoretical dependence of phase 
variance on ACF power coincides with 
that used in FITACF for relatively low 
levels of correlation  ≥ c, but assigns 
relatively larger weight (i.e. lesser 
variance) to the highly correlated lags. 

 

 

Also, FITACF underestimates variance 
at all lags for smaller c (larger W), 
because the ratio <P>/P(0) decreases 
with increasing c .   
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Velocity variance 

A zero-order estimate of the phase 

slope variance (STD) can be obtained 

by linearising the phase error’s 

dependence on the time lag, using the 

decay time value as a reference point:  

The respective velocity STD is 

proportional to spectral width and to  

 

 

 

 

 

 

Here we use the relation between 

spectral width and decay time, 
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Velocity variance (cont.) 

The expression obtained for the 

velocity STD has very clear 

physical meaning: a wider 

Doppler spectrum corresponds 

to a larger uncertainty in the 

location of its maximum. On the 

other hand, a larger number of 

averages produces a smoother 

spectrum. Importantly, this value 

is independent of the radar 

frequency. 
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Fitting errors 

These numbers are further 

improved by fitting a linear 

function to the phase at nlag 

available ACF lags, so that the 

uncorrelated phase fluctuations 

at different lags partially 

compensate each other and 

decrease the overall velocity 

uncertainty              . 
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Numerical simulations 
The theoretical estimates have to be tested 

against real data to make sure that our statistical 

model is reasonable. However, there is a 

problem: in real data, we do not know the 

“input” velocity value to be able to estimate how 

much its measured value deviates from the “real” 

value. However, a zero-order test can done using 

simulated data where the input is known.  
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Simple Simulation 

• The simplest simulation was performed by 

generating independent normally distributed 

phase variations at all lags, with variance 

magnitudes defined by the theoretical 

dependence on |R| and N  

• These simulations agreed well with the theory 

for both velocity value and its variance. 
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Simple simulation (cont.) 
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More realistic simulation 

• Collective scatter approach + SuperDARN pulse 
sequence 

 (Ribeiro et al, Radio Science [2013]) 

– Large number of point targets inside the range gate 

– Input parameters: 

• Amplitude (power) 

• Lifetime (spectral width) 

• Background velocity  

• Number of averages (fluctuation level) 

– Output – standard RAWACF data 
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Simulated phase variance (N=76) 

29/05/2013 
SuperDARN Workshop, 26-31/05/2013, 

Moose Jaw, Saskatchewan, Canada 
32 

 
 

N

R

2

12 


 




Simulated phase variance (N=25) 
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However, velocity variance is too large! 
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Correlated phase variations? 
The explanation for this 
discrepancy is that we assumed 
uncorrelated phase variations at 
different lags. In fact, this may 
not be the case because the ACF 
lags are combined from only 7 
or 8 independent samples 
(pulses).  

Therefore, the actual number of 
DoF is determined by the 
number of pulses, npul, but not 
the number of  lags, nlag. This 
assumption is supported by 
calculating correlations between 
the simulated phase variations 
at different lags. 
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Real number of DoF 
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Looking for uncorrelated lags 

A close look at the phase 

correlation matrix reveals 

that there are npul-1 lags 

which are uncorrelated 

with each other. For the 

7-pulse sequence these 

are lags 1,2,3,4,8 and 9. 

 

What if we use only them 

for fitting? 

 

29/05/2013 
SuperDARN Workshop, 26-31/05/2013, 

Moose Jaw, Saskatchewan, Canada 
37 

Uncorrelated lags 



Uncorrelated lags only 
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How to fix the problem? 

To use the effective number 

of DoF based on the number 

of pulses but proportional to 

the number of available lags 

 

 

 

and use the maximum power 

instead of the mean power as 

a norm. 
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Direct way of measuring v 

We can also calculate velocity 

variance for each ACF directly from 

the slope estimate for each lag. Due 

to an approximately linear relation 

between the phase variance and time 

lag for τ ≤ τc, we don’t need to worry 

much about weighting.  

 

In this case we also need to use neff  

instead of nlag. The resulting estimate 

seems to be closer to the measured 

errors. In fact, it coincides with them 

if a factor of        is applied!!! 
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Phase variance in real data 

• To test the theoretical expression for phase 

variance, we analysed deviations from the 

phase fit at all “good” lags for two month of 

Saskatoon data, March 2002 (N=76) and 

March 2012 (N=25). These data also differ by 

the pulse sequence: original (7 pulses) for 

2002 and katscan (8 pulses) for 2012. 
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Real data: March 2002 (N=76) 
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Real data: March 2012 (N=25) 
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Reality generally agrees, but… 

The experimental phase fluctuations agree with 

their theoretical estimates surprisingly well and 

allows us to assume that the theoretical 

description of the measured ACF phase 

fluctuations is adequate. 

However, the phase distributions also exhibit 

long “tails” which indicate an additional source 

of variability.  
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Cross-range interference? 

Incoherent noise contribution 

to phase variance  

(Bendat & Pierslol) 
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Effect of CRI on real data 
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Summary 

• Current FITACF velocity errors (uncertainties) are significantly 

underestimated  due to 

– errors is the code  

– incomplete description/understanding of the phase fluctuations. 

• Two major methodology issues to address are: 

– correlated phase fluctuations at different lags (effective 

number of DoF) 

– cross-range interference effects on the phase (extra variance) 

• It is also desirable to use the optimal (theoretical)  weighting phase 

variance in actual phase fitting and error estimates. 

• In a meantime, we can use vW/sqrt(N) as a “rule of thumb”. 

• Special measures have to be taken to minimise CRI. 
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