
1

Radops 2000
Reference Manual

R.J.Barnes

2

3

Index
Introduction ...7

Software Organization.. 10
System Requirements.. 11
Compiling The Software... 12
Running The Software.. 14
Command Line Options.. 15
The Scheduler .. 16
Changing Radar Parameters ... 18
Debug Mode... 20
Compiling Control Programs.. 21

Hardware Drivers... 22
a_d_drive... 23
gbuf ... 24
gps_clock... 25
radops_dio.. 26

Primary Tasks ... 27
alter ... 28
echo_data... 30
erlog ... 31
fitacf ... 32
fit_buffer .. 34
raw_write... 35
scheduler.. 37

Display Tasks ... 39
display ... 40
ftdisp ... 42
qltp ... 44

Summary Data Tasks ... 47
compress.. 48
sd_summary... 50
vlptm ... 51

Internet Access Software.. 53
client ... 54
echo_dataIP.. 55
server ... 56

Off-line Support Software... 57
close_file.. 58
cmp_fit ... 59
ctrig ... 60
plot_cmp.. 61
tplot_cmp... 62

Diagnostic Utilities... 63
a_d_test... 64
test_dio ... 65
test_echo.. 66
test_gbuf... 67

Software Version Control... 68
control_mod... 69
logo ... 71

The Control Library ... 72

4

Data Structures... 73
radops_parms.. 74
rawdata... 76
fitdata ... 77

a_d_drive.o... 78
do_scan... 79
get_buf_adr... 80
get_buf_num... 81
get_buf_size.. 82
get_scan_reset... 83
get_scan_status... 84
scan_reset... 85

dio.o ... 86
init_xt_pid .. 87
send_fclr... 88
send_tsg.. 89
send_tsg_no_stat... 90
set_antenna_pid .. 91
set_beam_pid.. 92
set_filter_pid... 93
set_freq_pid.. 94
set_test_mod_pid.. 95
set_tsg_pid.. 96
verify_id_pid... 97

get_fit.o ... 98
get_fit... 99

get_status.o... 100
get_status.. 101
get_status_pid... 102

log_error.o.. 103
log_error... 104

message.o... 105
message.. 106
message_array.. 107
message_pid... 108
message_pid_array.. 109
task_id .. 110

option.o ... 111
process_file... 112
process_option.. 114

read_clock.o... 116
read_clock.. 117

read_fit.o.. 118
read_fit... 119

read_raw.o.. 120
read_raw... 121
read_raw_data .. 122

sample.o... 123
add_data ... 124
remove_table... 126
transform_data.. 127

task_write.o.. 128
task_close... 129
task_open.. 130

5

task_quit ... 131
task_write_aux.. 132
task_write_fit.. 133
task_write_raw.. 134

user_int.o ... 135
scheduled.. 136
register_program... 137
user_int... 138

The Task library ... 141
add_point.o... 142

add_point.. 143
cnv_time.o.. 144

get_time.. 145
year_sec.. 146

cnvt_coord.o... 147
cubic... 148
geographic.. 149
load_rpos.. 150
radar_pos.. 151

echo_util.o.. 152
echo_register... 153

file_io.o ... 154
decode_msg.. 155
open_file... 157

filer.o ... 158
filer ... 159
leaf_name... 160

gbuf_util.o.. 161
get_display.. 162
refresh_display.. 163

graph_lib.o ... 164
bgcolor.. 165
clg .. 166
cnv_to_ppm.. 167
color... 168
copy_gbuf... 169
copy_pixel.. 170
copy_polygon.. 171
draw... 172
draw_ellipse.. 173
draw_polygon... 174
draw_rectangle ... 175
draw_text.. 176
free_gbuf... 177
make_gbuf.. 178
move... 179
set_gbuf.. 180
write_pixel.. 181

log_error.o.. 182
log_error... 183

message.o... 184
message.. 185
message_array.. 186
message_pid... 187

6

message_pid_array.. 188
task_id .. 189

radar_name.o.. 190
radar_code.. 191
radar_name... 192

read_clock.o... 193
read_clock.. 194

read_data.o... 195
read_double.. 196
read_float.. 197
read_long.. 198
read_short... 199

read_fit.o.. 200
read_fit... 201

read_raw.o.. 202
read_raw... 203
read_raw_data .. 204

sample.o... 205
add_data ... 206
remove_table... 208
transform_data.. 209

terminal.o... 210
centre_text.. 211
confirm_prompt.. 212
draw_menu... 213
draw_menu_item .. 214
menu_handler ... 215
report_error .. 217
setup_mouse... 218
show_message.. 219

test_key.o... 220
free_key.. 221
register_key.. 222
test_key... 223

Appendix A:Software Organization Chart 224
Appendix B:Directory Structure.. 226
Appendix C:File List... 228

7

Introduction

Introduction

8

Radops 2000
The Radar Operating System (Radops) is a suite of software that forms the
control system for the HF Radars of the Super Dual Auroral Radar Network
(SuperDARN). It is written under the QNX Operating System, a modern
micro-kernel OS designed with particular emphasis on real-time embedded
control applications.

The Radops software is divided into separate tasks that are each responsible for
a different aspect of controlling the Radar. They communicate with each other
using the QNX method of Inter-Process Communication (IPC), message
passing. Messages can be passed between tasks running on different computers
over a Local Area Network (LAN), allowing the software to be distributed
across a network of machines.

The Radar consists of an array of Antennas which are electronically steered
into one of sixteen directions or beams.

The radar operates by transmitting a complicated pattern of pulses and then
sampling the reflected echoes. The raw data is then processed by calculating
the Auto-Correlation Function (ACF) at seventy five (75) range gates or bins.

Natural and artificial noise is a particular problem at the frequencies the Radar
operates at, and can drown out the echoes from the pulse sequence. So in the
normal mode of operation the software searches for a “quiet” frequency with a
low noise level to use at which to transmit the pulses. If the received signal is
too powerful, it can be electronically attenuated within the receiver.

The timing of the pulse sequence must be very accurate and consequently a
separate computer is dedicated to controlling it. When the pulse sequences is
transmitted, all interrupts are disabled on this timing computer to help achieve
the required accuracy. The computer is linked to the main computer using an
Ethernet LAN connection.

The overall control of the Radar is provided by a program called a Radar
Control Program. This is a task supplied by the operator that controls the other
tasks and determines the mode of operation of the Radar. A set of C libraries
provide the interface between the control program and the other parts of the
Radar software.

The radar tasks can be divided into several groups: driver tasks, primary tasks,
display tasks, summary tasks. diagnostic and test programs, software version
control utilities, off-line data processing tasks, and Internet access tasks. The
two most important groups are the hardware drivers and the primary tasks.

Introduction

9

Drivers
The driver tasks communicate directly with the Radar hardware interface cards.

The task a_d_drive programs the Analogue to Digital Converter (ADC)
card which samples the signal received by the Radar. It uses shared memory
and Direct Memory Transfer (DMA) to achieve the high time resolution
required.

The task radops_dio runs on the timing computer and controls the Digital
Input/Output board which transmits the pulse sequence. The card is also
responsible for selecting the operating frequency, beam number and attenuation
level.

The Radar network is synchronized to the Global Positioning System (GPS)
clock by using a GPS satellite receiver card. The system clock on the main
computer is periodically synchronized to the GPS clock by the driver
gps_clock .

The driver gbuf controls the video hardware on the main computer and is
essential for running the many graphical displays that are part of the Radops
software.

Primary Tasks
The primary tasks are the main programs responsible for processing and
storing the data generated by the Radar.

The task errlog logs and records errors and messages from the other parts of
the software in a plain text file. A new log is created at the start of each day.

The task schedule , as its name implies determines which control program
should be running and at what time. A text file containing the start times and
command lines for programs to run is periodically loaded by the task. When the
start time of a program has elapsed the current control program is terminated
and the new one started.

The task echo_data distributes data from the control program to the other
parts of the Radar software. Using echo_data , tasks can be started and
stopped without interrupting the current operation of the Radar

The task raw_write stores the data generated by the Radar in files on the
hard disk. It compresses the data using a simple algorithm to reduce the
amount of disk space required.

The task fitacf processes the raw ACFs by attempting to fit them to a
known distribution. This allows parameters like the back-scattered power and
doppler velocity to be derived.

The task is very computationally intensive and processes one block of raw data
while the next is being generated. The task fit_buffer temporarily stores
the data from fitacf before returning it to the control program.

The final task alter , allows the user to inspect and change the operating
parameters of the control program.

Software Organization

10

The Radar software is organized within the “/radops ” directory:

/radops/bin binaries of all of the main Radar tasks
excluding control programs.

/radops/errlogs error logs produced by errlog .
/radops/include header files for the Radar control library

and the tasks library.
/radops/lib task and control libraries.
/radops/scdlogs logs produced by the Scheduler.
/radops/scripts shell scripts for making the Radar

software and for starting the tasks.
/radops/src source code for the Radar software.
/radops/tables hardware tables for the Radar.
/radops/usr source and binaries for the control

programs and the support library.

The sub-directories in “/radops/usr ” include:

/radops/usr/bin binaries for the control programs.
/radops/usr/include headers for the support library.
/radops/usr/lib support library for the control programs.
/radops/usr/src/ source code for the control programs.

System Requirements

11

The software is designed to run on a QNX network comprising of two or more
machines. One machine contains the DIO card and acts as the timing
computer, a second machine containing the A/D card and the GPS clock
interface card is the main computer and runs the majority of the Radar tasks.

The software has been tested on QNX version 4.22-4.24 and Watcom C version
9.52-10.6 The operating system should be running in 32 bit mode.

Compiling the Software

12

The Radar software is supplied as a tar archive on either on diskette or via FTP.
The archive contains the source code for the software which must be compiled
before it can be used. Copy the archive
“radops2000.release. x.yy.tar.F ” into the root directory of your main
computer and type:

This will backup any existing Radar software into the directory
“ /radops.old ” and create the new directory structure for the Radar
software.

The install script will check and if necessary attempt to modify the default login
profile to include the environment variables used by the Radar software by
adding the following lines to the file “/etc/profile ”:

The file “/radops/scripts/rad_export ” contains the environment
variables that define where the Radar will store its data files. You may wish to
alter this file for your particular system.

 The install script will then attempt to update the header and data files that are
specific for a particular Radar.

You will then be asked if you wish to compile the Radar software. If you type
“n” the script will terminate at this point. If you type “y” the script
“ /radops/scripts/make_radar ” will be executed.

A title page showing the version number of the software will be displayed. The
script then checks which station the software is to be compiled for and prompts
you to confirm that this is correct. Type “y” if the station name is correct or
“n” to exit the script.

The script will now ask if you wish to install the pre-compiled binaries. Only a
few of the radar tasks contain code that is unique for each site and the archive
contains a set of binaries that can be quickly copied to the “/radops/bin ”
directory. If you have problems installing the pre-compiled binaries then type
“n” and the entire set of software will be compiled from scratch.

install -u radops2000.release. x.yy.tar.F

. /radops/scripts/rad_export

. /radops/scripts/rad_path

Compiling the Software

13

Once the software has been compiled or installed you must copy the program
radops_dio to the timing computer. Assuming that the software has been
installed on node one (1) of your QNX network and the timing computer is
node two (2), enter the following on the node one (1) machine:

You should alter the sysinit file of the timing computer so that
radops_dio is automatically loaded when the machine is re-booted.

If you need to recompile the software, or you chose not to compile it when you
first installed the system, you can use the script “make_radar ”. Type the
command:

The script will display a title page showing the software version number. It will
then check which station the Radar software is to be compiled for and prompt
you to confirm that this is correct. Type “y” if the station is correct or “n” to
exit the script.

If the station is not correct then you must modify the header file
“ /radops/include/radops/radar_id.h ” for your particular Radar.
Un-comment the lines of code appropriate for your station and re-run the
“make_radar ” script.

mkdir //2/radops
mkdir //2/radops/bin
cp /radops/bin/radops_dio //2/radops/bin/

/radops/scripts/make_radar

Running the Software

14

The Radar tasks must be started in a specific order. Assuming that
radops_dio is already running on the timing computer, the script
“ /radops/scripts/start_radar ” can be used to start the rest of the
software:

There are other Radar tasks, such as sd_summary and vlptm , that can be
added to this script depending on the way you operate your Radar.

Usually control programs are started by the scheduler so the last line of your
“start_radar ” script should run the Scheduler:

The Radar can be stopped by creating a “stop_radar ” script that kills all the
Radar tasks in turn:

Under the scheduler the current control program is a child process of
schedule , so killing the scheduler will also terminate the control program.

 Once the rest of the Radar software has been started then a control program
can be run. The programs are located in the directory “/radops/usr/bin ”.
Your PATH environment variable will already include this directory so you
should just be able to type the name of the program to get it to run.

#
start the tasks
#

ontty /dev/con2 /radops/bin/errlog
ontty /dev/con3 /radops/bin/a_d_drive
ontty /dev/con3 /radops/bin/gps_clock
ontty /dev/con4 /radops/bin/echo_data
ontty /dec/con3 /radops/bin/fit_buffer
ontty /dev/con3 /radops/bin/fitacf
ontty /dev/con3 /radops/bin/rawwrite

ontty /dev/con5 /radops/bin/schedule radops.sched

#
stop the tasks
#

slay -f schedule
slay -f rawwrite
slay -f fitacf
slay -f fit_buffer
slay -f echo_data
slay -f a_d_drive
slay -f gps_clock
slay errlog

Command Line Options

15

Many Radar Control Programs support optional parameters that can be passed
in on the command line. These follow the normal UNIX convention for
optional command parameters:

This would force normal_scan to start a scan at beam 3 and end the scan on
beam 12. The program normal_scan is the program the Radar normally
runs for SuperDARN common mode time.

Normally you can find out about the command line options by using the use
command. The usage message produced by normal_scan is:

normal_scan -sb 3 -eb 12

normal_scan [-dt day_time] [-nt night_time]
 [-df day_start_freq]
 [-nf night_start_freq]

[-dr day_frang]
 [-nr night_frang] [-xcf xcount]
 [-dm day_mpinc] [-nm night_mpinc]
 [-sb start_beam] [-eb end_beam]
 [-af start_freq] [-st scat_thr]

[-ft frequency table file]
 [option file]

The Scheduler

16

Normally control programs are not started by an operator. Instead a task called
schedule is responsible for starting and stopping programs. It uses a script
called a schedule file that specifies what time and date a program is due to start
and what command line to use to execute the program:

Each line in the schedule file corresponds to a command to execute. Lines
beginning with a “#” are treated as comments and are ignored.

If a line begins with the word default , then the rest of the line is treated as
the command to execute if no other program is due to start. A schedule file
must include a default program.

Other lines are interpreted as :

<year> < month> < day> < hour> < minute> < command line>

The time is specified in UTC format. After the time has been read, the
remainder of the line is treated as the command line to execute.

The scheduler scans through the file and loads and runs the appropriate
control program. Every thirty seconds the scheduler checks through the loaded
schedule, if the start time of a new program has expired then the current
program is stopped and the new one started.

To run the scheduler enter the command :

Where filename is the name of the schedule file to run.

The scheduler will then scan through the schedule file and load and run the
appropriate Control Program. Every thirty seconds the scheduler checks
through the loaded schedule; if the start time of a new program has expired
then the current program is stopped and the new one started.

Periodically the scheduler reloads and re-processes the schedule file. This
allows any alterations or additions to the schedule to be correctly identified and
acted upon. By default the schedule file is reloaded every hour, however this
can be changed by including an option flag when the scheduler is started :

schedule -h filename reload filename every hour
schedule -d filename reload filename every day
schedule -t filename eload filename every 10 minutes.

test.sched
default /radops/usr/bin/normal_scan
1996 3 19 14 50 /radops/usr/bin/sdcusp_2200
1996 3 19 15 00 /radops/usr/bin/normal_scan
1996 3 19 15 30 /radops/usr/bin/sdcusp_2200
1996 3 19 15 40 /radops/usr/bin/normal_scan

schedule filename

The Scheduler

17

The scheduler can also be operated in verbose mode by specifying the “-v ”
option on the command line. In this mode the scheduler will display the
currently operating schedule every thirty seconds. This is useful in checking
that the schedule file has been correctly interpreted.

The scheduler will record all of its actions in a special log file stored in the
directory “/radops/scdlogs ”. Each day a new log file is created with the
filename “scdlog .ddd” where ddd is the day of the year.

The scheduler will periodically check to see whether the control program is still
running. If it finds that it has died, it will attempt to restart it. If the current
control program does not restart then the scheduler will load the default
program instead.

Changing Radar Parameters

18

When a control program is running it is useful to be able to and view or alter
the operating parameters. This is accomplished by using the task alter ,
which received the current radar parameters from the control program and then
enters a command line shell denoted by the “>” prompt.

The shell supports three commands :

go
Typing “go” will send the altered parameters back to the control program so
that they will take affect at the start of the next integration period.

show [variable_name..]
Typing “show” will list the values of the specified variables. If no variable
names are listed then the entire set will be shown.

<variable> = < value>
A new value is assigned to a variable by using the “=” sign:

There should be no spaces between the value, the “=” sign, or the variable
name.

go
show
<variable> = < value>

bmnum=12
combf=Hello world

Changing Radar Parameters

19

The radar parameters that can be altered are :

The author of the control program can also specify other variables that can be
altered. The names and values of these optional variables can be found by using
the “show” command.

intt the integration period.
txpl the pulse length.
mpinc the lag separation in micro seconds.
mppul the number of pulses in a pulse pattern.
mplgs the number of lags in the lag table.
nrang the number of range gates.
frang the distance in kilometers to the first range gate.
rsep the range separation in kilometers.
bmnum the current beam number.
xcf the cross correlation flag.
tfreq the transmitted frequency.
scan the scan mode.
mxpwr the maximum power allowed.
lvmax the maximum noise level allowed.
cp the program id.
usr_resS1 user defined short variable 1.
usr_resS2 user defined short variable 2.
usr_resS3 user defined short variable 3.
usr_resL1 user defined long variable 1.
usr_resL2 user defined long variable 2.
combf the comment buffer.

Debug Mode

20

Using the debug modes of the driver tasks, the Radar software can be tested on
a computer without requiring the hardware interface cards. This allows new
control programs to be checked out before they are run on an actual Radar.

All the Radar tasks will behave exactly as they would on an actual Radar,
fitacf will process raw data from the control program, raw_write and
the summary tasks will open and write data files, and the display tasks can be
run.

As the timing sequence is generated but not transmitted, the task
radops_dio can be run on the same computer as the rest of the Radar
software, so that the software in its entirety can be tested on a single computer.

The script “start_debug ” will start up the software in debug mode.

Unfortunately, in debug mode, no data is actually produced, however there are
functions in the control library that allow data to be read in from a file. This
allows the control program to simulate an operational Radar by using the raw
data taken from a file.The source code for Radar control programs is located in
the directory “/radops/usr/src ”. Each program has its own sub-directory
that contains the C source code for the program and any extra files that it
requires.

Compiling Control Programs

21

Each source directory contains a makefile that is used to compile the
program (see the QNX Utilities Reference guide for more about makefiles). A
typical makefile looks like this:

The first line of the makefile ensures that the program is compiled using the
two libraries needed to operate the Radar, “control.lib ” and
“support.lib ”.

The location of these two libraries are defined by the environment variable LIB
used by the C compiler to locate library files.

To compile the program type:

The compiled program should then be copied to the directory
“/ radops/usr/bin ”.

CFLAGS = -Oneatx -l control.lib support.lib

normal_scan : normal_scan.o
$(LINK.c) normal_scan.o \
-o normal_scan
usemsg normal_scan normal_scan.c

make

22

Hardware Drivers

a_d_drive

23

Syntax

Options

Description
The driver a_d_drive provides the software interface to the dt2828 Analogue
to Digital Converter card.

 The card can be programmed to use either an internal or external trigger
signal, it can sample over multiple channels and it can use Direct Memory
Access to store the sampled data in memory.

The driver supports two memory buffers that are used for the DMA transfers.
The buffers use shared memory so that the control program can access and
process the raw data. Two buffers are used so that while one is being processed
the other can be used to sample the next integration period.

By starting the driver using the “-d ” option it will run in “debug” or
simulation mode and will not attempt to program the dt2828 card. This allows
the software to be tested without the card installed on the main computer.

The optional name string is the name used to register the task with the
operating system. By default the driver is registered under the name
“a_d_drive ”. When another task wishes to locate the driver it must use this
name. This allows two Radars to be connected to the same network as each
driver must have a unique name.

a_d_drive [-d] [name]

-d run the driver in debug mode by disabling the
hardware interface.

name register the driver under this name with the Operating
System.

gbuf

24

Syntax

Options

Description
The driver gbuf controls the graphics hardware on the main computer. It
converts one or more QNX text consoles into graphics display consoles in
either SVGA or VGA modes.

For each graphics console the driver creates an area of shared memory to use as
a frame buffer. Graphics operations are performed on the buffer and whenever
the console becomes active it is displayed on the screen.

The console numbers to use must be included on the command line. Once a
console has been claimed for graphics it cannot be used for command line
input.

By default the driver uses an SVGA mode of 800x600 pixels and 256 colours.
A VGA mode of 640x480 pixels and 256 colours can be used by including the
“-v ” command line option.

 When the driver is terminated it will not automatically relinquish the shared
memory it has claimed as other tasks may also be using it. To force the shared
memory to be released, call the driver using just the “-f ” option.

gbuf [-v] console …
gbuf [-f]

-v create consoles using VGA graphics modes.
-f free up shared memory and exit.
console the qnx console numbers to use as graphics consoles.

gps_clock

25

Syntax

Options

Description
The driver gps_clock controls the GPS receiver card and returns the time
synchronized to the GPS master clock. The driver automatically re-calibrates
the system clock every 500 seconds.

By starting the driver using the “-d ” option it will run in “debug” or
simulation mode and will not attempt to access the GPS receiver card. This
allows the software to be tested without the card installed on the main
computer.

The optional name string is the filename to use when recording the status and
diagnostic information, by default it is called “/radops/gpslog ”. The status
is recorded every 500 seconds.

gps_clock [-d] [name]

-d run the driver in debug mode by disabling the
hardware interface.

name record the status and diagnostic information in the file
called name.

radops_dio

26

Syntax

Options

Description
 The driver radops_dio is responsible for programming the DIO card which
sets the radar operating frequency, the receiver attenuation, the beam number,
reads the antenna status information, and most importantly, outputs the pulse
pattern that the radar transmits. As this is a time critical operation, interrupts
are disabled on the computer while the sequence is transmitted. Consequently
the DIO card is installed on a secondary timing computer. As the driver
requires direct access to the DIO card it must also be run on the timing
computer and communicate with the rest of the radar software over the
network.

 When radops_dio is running it displays the current transmission frequency,
the beam number, the attenuator setting, whether the radar is in test mode,
AGC and LOW_PWR status bits and what operation is being executed.

The program has sixteen buffers that are used to store timing sequences. The
control program downloads a timing sequence into one of these buffers prior to
outputting it to the DIO card.

Two types of timing sequence can be used; one is output on a single beam, the
other includes information about which beam each pulse should be transmitted
on.

By starting the driver using the “-d ” option it will run in “debug” or
simulation mode and will not attempt to program the DIO card. This allows the
software to be tested without the rest of the radar hardware, and as the
interrupts are not disabled, the driver can be run on the main computer
allowing all of the software to be tested on a single machine.

The optional name string is the name used to register the task with the
operating system. By default the driver is registered under the name
“ /radops_dio ”. When another task wishes to locate the driver it must use
this name. This allows two Radars to be connected to the same network as each
driver must have a unique name.

radops_dio [-d] [name]

-d run the driver in debug mode by disabling the
hardware interface.

name register the task under this name with the Operating
System.

27

Primary Tasks

alter

28

Syntax

Options

The task alter allows the user to change the operating parameters of the
radar.

When run the task receives the current operating parameters from the control
program before entering a command shell shown by the “>” prompt. The Radar
will continue to run while the user enters commands to examine and alter the
parameters.

The shell supports three commands :

go
Typing “go” will send the altered parameters back to the control program so
that they will take affect at the start of the next integration period.

show [variable_name..]
Typing “show” will list the values of the specified variables. If no variable
names are listed then the entire set will be shown.

<variable> = < value>
A new value is assigned to a variable by using the “=” sign:

There should be no spaces between the value, the “=” sign, or the variable
name.

The radar parameters that can be altered are :

alter [name]

name The name of the control program whose parameters
are to be modified.

go
show
<variable> = < value>

bmnum=12
combf=Hello world

alter

29

The author of the control program can also specify other variables that can be
altered. The names and values of these optional variables can be found by using
the “show” command.

The optional name string on the command line is the name registered by the
control program with the operating system, by default it is
“ /control_program ”.

intt the integration period.
txpl the pulse length.
mpinc the lag separation in micro seconds.
mppul the number of pulses in a pulse pattern.
mplgs the number of lags in the lag table.
nrang the number of range gates.
frang the distance in kilometers to the first range gate.
rsep the range separation in kilometers.
bmnum the current beam number.
xcf the cross correlation flag.
tfreq the transmitted frequency.
scan the scan mode.
mxpwr the maximum power allowed.
lvmax the maximum noise level allowed.
cp the program id.
usr_resS1 user defined short variable 1.
usr_resS2 user defined short variable 2.
usr_resS3 user defined short variable 3.
usr_resL1 user defined long variable 1.
usr_resL2 user defined long variable 2.
combf the comment buffer.

echo_data

30

Syntax

Options

Description
The task echo_data distributes both the raw ACF data and the fitted data
produced by fitacf to other tasks. Tasks that register themselves will
automatically receive the next block of data as it becomes available.

When a task wishes to register itself it sends a message containing a text string
to associate with it. The task echo_data adds the process id (pid) of the
registering task and the string to a table stored in memory.

Each time echo_data receives a message from the control program it
duplicates it and attempts to send it in turn to each task recorded in the table.
If a task has died then echo_data will remove that entry from the table and
move on to the next entry in the list.

If the task does not reply to the message within the time allocated for a single
task as set by the “-s ” option, then echo_data will time out and move onto
the next task in the table. If the echo_data cannot send the message to all the
tasks within the total allocated time as set by the “-t ” option, then it will not
send to the remaining tasks in the list. When the next block of data is received,
the task will try sending to all the tasks again. By default, the time-out period
for a single task is one (1) second, and the total time-out period is five (5)
seconds.

The “-n ” option specifies the name used to register the task with the operating
system. When another task wishes to locate echo_data it must use this name.
By default the task is registered under the name “/echo_data ”.

The “-e ” option specifies the name of the error log that the task reports errors
and warnings to. By default errors are sent to the task registered under the
name “/errlog ”.

echo_data [-s stime] [-t ttime] [-n
echo_name] [-e err_name]

-s stime the time-out period for a single task.
-t ttime the time-out period for all the tasks.
-n echo_name register the task under this name with the Operating

System.
-e err_name sends errors to the task registered under the name

err_name.

errlog

31

Syntax

Options

Description
The errlog task reports and logs errors sent from the other radar tasks. The
log records the time at which the message was sent, the process id of the task
reporting the error, its name, and a text string that describes the error.

Errors are printed to the console on which the errlog task runs and also
recorded in a file stored in the directory “/radops/errlogs”. Each day a new log
file is created with the filename errlog .ddd, where ddd is the day of the year.

The optional name string specifies the name used to register the task with the
operating system. When a task wishes to locate the error log it must use this
name. By default the task is registered under the name “/errlog ”.

errlog [name]

name register the task under this name with the Operating
System.

fitacf

32

Syntax

Options

Description
The task fitacf calculates the derived parameters such as velocity and
spectral width.

The task receives the raw ACF data from the control program and attempts to
fit it to the expected distribution. From this a number of parameters are
calculated and stored in an output file. Files are opened and closed at times
specified by the control program.

The data is also returned to the control program via the fit_buffer task for
distribution to the other radar tasks.

The processing of the raw data requires a significant amount of CPU time and
for this reason the calculations are performed during the next integration
period. Consequently the fitted data lags one beam behind the raw data.

The program produces two output files, one has the suffix FIT and contains the
data, the other has the suffix INX and contains an index to the data. The
filenames are of the form:

yymmdds.FIT
yymmdds.INX

Where:

The “-e ” option specifies the name of the error log task that the task reports
errors and warnings to. By default errors are reported to the task registered
under the name “/errlog ”.

fitacf [-e err_name] [-f buf_name] [name]

-e err_name send errors to the task registered under the name
err_name.

-f buf_name send the output to the buffer task registered as
buf_name.

name register the task under this name with the Operating
System.

yy year XXyy
mm month.
dd day
hh hour
s station id e.g. g

fitacf

33

The optional name string is the name used to register the task with the
Operating System. When a control program wishes to communicate with
fitacf it must use this name. By default the task is registered under the name
“ /fitacf ”.

The “-f ” option specifies the name of the fit_buffer task that the
processed data will be sent to.

fit_buffer

34

Syntax

Options

Description
The task fit_buffer acts as a temporary storage buffer for the data
produced by fitacf .

Both the raw ACFs and the fitted data are distributed to the other tasks by the
control program which must get the processed data from fitacf . However
fitacf processes the last block of data during the current integration period
and the data must be stored until the control program is ready to receive it. The
fit_buffer task receives the block of data from fitacf and passes it to the
control program when required.

The optional name string specifies the name used to register the task with the
operating system. When another fitacf wishes to locate the buffer it must
use this name. By default the task is registered under the name
“ /fit_buffer ”.

fit_buffer [name]

name register the task under this name with the Operating
System.

raw_write

35

Syntax

Options

Description
The task raw_write receives the raw ACF data from the control program,
compresses it, and stores it on disk. Files are opened and closed at times
specified by the control program.

The data is compressed from 32 bit integers into 16-bit pseudo floating point
numbers. The compression does result in a loss of some accuracy as the low
order bits of the original integers are lost, however the compression does give a
50% reduction in the output file size.

The filenames are of the form:

yymmdds.DAT

Where:

By specifying the “-t ” option a threshold value can be applied to the lag-zero
power. Data below this threshold is not stored in the file providing a further
reduction in the size of the output file. The threshold function is defined as:

 threshold*NOISE/2.

Data with lag-zero power less than the result of the above sum is rejected.

The “-e ” option specifies the name of the error log task that the task reports
errors and warnings to. By default errors are sent to the task registered under
the name “/errlog ”.

raw_write [-e err_name] [-t threshold] [name]

-e err_name send errors to the task registered under the name
err_name.

-t threshold reject data with lag-zero power less than
threshold*NOISE/2.

name register the task under this name with the Operating
System.

yy year XXyy
mm month.
dd day
hh hour
s atation id e.g. g

raw_write

36

The optional name string is the name used to register the task with the
Operating System. When a control program wishes to communicate with
raw_write it must use this name. By default the task is registered under the
name “/raw_write ”.

scheduler

37

Syntax

Options

Description
The task schedule is responsible for scheduling when control programs are
started and stopped. The task reads in a schedule file and extracts from this the
names and start times for the programs to run.

A schedule file is a simple text file containing the start times and command
line of the programs to run:

Each line in the schedule file corresponds to a command to execute. Lines
beginning with a “#” are treated as comments and are ignored.

If a line begins with the word default , then the rest of the line is treated as
the command to execute if no other program is due to start. A schedule file
must include a default program.

Other lines are interpreted as :

<year> < month> < day> < hour> < minute> < command line>

The time is specified in UTC format. After the time has been read, the
remainder of the line is treated as the command line to execute.

The scheduler scans through the file and loads and runs the appropriate
control program. Every thirty seconds the scheduler checks through the loaded
schedule, if the start time of a new program has expired then the current
program is stopped and the new one started.

schedule [-t] [-h] [-d] [-v] [-n name]
sched_file

-t reload the schedule every ten minutes.
-h reload the schedule every hour.
-d reload the schedule every day.
-v operate in verbose mode.
-n name register the task under this name with the Operating

System.
sched_file the filename of the schedule file to load.

test.sched
default /radops/usr/bin/normal_scan
1996 3 19 14 50 /radops/usr/bin/sdcusp_2200
1996 3 19 15 00 /radops/usr/bin/normal_scan
1996 3 19 15 30 /radops/usr/bin/sdcusp_2200
1996 3 19 15 40 /radops/usr/bin/normal_scan

scheduler

38

Periodically the scheduler reloads and re-processes the schedule file. This
allows any alterations or additions to the schedule to be correctly identified and
acted upon. By default the schedule file is reloaded every hour, however this
can be changed by using one of the option flags; “-t ” will reload the schedule
every 10 minutes, “-h ” will reload it every hour, and “-d ” will reload it once a
day.

When the scheduler is started with the “-v ” flag it operates in verbose mode
displaying currently running schedule every thirty seconds. This is useful in
checking that the schedule file has been correctly interpreted.

The “-n ” option specifies the name used to register the task with the operating
system. When another task wishes to locate the scheduler it must use this name.
By default the task is registered under the name “/schedule ”.

The scheduler will record all of its actions in a special log file stored in the
directory “/radops/scdlogs ”. Each day a new log file is created with the
filename scdlog .ddd , where ddd is the day of the year.

39

Display Tasks

display

40

Syntax

Options

Description
The task display is a client of echo_data that displays a graphical
representation of the radar data on the console.

The program provides a crude graphical display on a QNX or X terminal of the
raw data generated by a control program and the fitted data produced by
fitacf .

When the program is running it will display the current transmitted frequency,
the noise level, the range separation, first range gate, time, and beam number.
Depending on the display mode selected it will also plot the raw ACF at the
specified range, the raw ACF with the largest power, or, the fitted velocity, the
lambda power, or lambda width for all ranges and beams.

The fitted data displays have range gates running horizontally across the screen
and beam number running vertically down the screen. On a QNX terminal
radar data is plotted as coloured squares according to the colour bar shown at
the top of the screen. On an X terminal the bar consists of the numbers from 0-
9. The maximum value of the bar is displayed at the top right of the screen.
For lambda power and spectral width the bar corresponds to values between
zero and this value, for velocity it corresponds to values between plus and
minus this value. The maximum value of the bar can be altered by pressing the
up and down arrow keys, or by typing in the number and pressing return.

The ACF display shows the raw lag 0 power for all ranges at the top of the
screen. Below that is the ACF plot for the specified range. The selected range
numbered from zero can be altered by using the up and down arrow keys or by
typing in the desired range and pressing return. Pressing “m” will plot the
range with the maximum lag-0 power. The selected range is shown in the top
right of the screen.

display [-a [range]] [[-p] [-v] [-w]
[scale]] [-m] [-e echo_name]

-a range plot the calculated ACF at the range gate given by
range.

-p scale plot the lambda power with a colour scale ranging
between 0 and +scale dB.

-v scale plot the velocity with a colour scale of range ±scale
ms-1.

-w scale plot the lambda spectral width with a colour scale
ranging between 0 and +scale ms-1.

-m plot the ACF with the highest lag-zero power.
-e echo_name receive data from the version of echo_data

registered under the name echo_name.

display

41

The selected mode can be changed by pressing the left and right arrow keys, or
pressing “a” for ACF, “v” for velocity display, “p” for lambda power or “w”
for lambda width. The program starts in the velocity mode.

The program can be stopped at any time by pressing <Ctrl > <c> or by typing
“q”.

The command line options control which mode the display task is started in; “-
a” displays the ACF at the specified range, “-p ” displays the lambda power, “-
w” the lambda width, and “-v ” shows the velocity. The optional scale value
sets the limits of the colour scale. The “-m” option displays the ACF with the
largest lag zero power.

The “-e ” option specifies the name of the echo_data task to connect to. By
default the task will connect to the program registered under the name
“ /echo_data ”.

fitdisp

42

Syntax

Options

The task fitdisp receives data from echo_data and produces a real-time
plot on a QNX machine running the gbuf graphics driver. The plot is a
geographically accurate view of the fitted data produced by fitacf . The plot
has a number of overlays including the outline of the continents, the field of
views of the other Radars and a set of user defined text labels.

The data plotted is selected by the command line options; selecting “-v ” plots
velocity, “-p ” plots lambda power, and “-w ” plots spectral width. By default
velocity is plotted. The maximum limits of the colour scale are set by using the
“-m” flag.

Usually the task checks the fitted data and only plots values for which the
quality flag has been set, this can be over-ridden by using the “-q ” flag. The
“-t ” option applies a limiting threshold to the lag-zero power so that data with
power below the threshold is ignored.

The “-e ” option specifies the name of the echo_data task to connect to. By
default the task registered under the name “/echo_data ” is used.

The user defined labels are stored in a file pointed to by the environment
variable SD_OVERLAY, usually this is set to
“ /radops/tables/overlay ”. The overlays are defined as a simple space
separated text file with one label per line:

Lines beginning with a ‘#’ are treated as comments and ignored. The first two
entries on a line are the latitude and longitude of the label, the remainder of
the line is taken to be the text label.

fitdisp [-p] [-w] [-v] [-q] [-t
low_power] [-m max_val] [console]

-p plot lambda power.
-w plot spectral width.
-v plot velocity.
-q ignore the quality flag in the data.
-t low_power set the threshold of the lag zero power to plot.
-m max_val set the limits of the colour scale to max_val.
-e echo_name receive data from the version of echo_data

registered under the name echo_name.
console display the output on this graphics console.

Example of an overlay file
-90.0 0.0 South Pole
-98.0 45.0 AGO 1
90.0.0 0.0 North Pole

fitdisp

43

The last argument of the command line is the console number on which the
plot will be displayed. If this argument is omitted then the plot will appear on
console eight (8).

qltp

44

Syntax

Options

Description
The task qltp receives data from echo_data and produces a summary plot
that can be displayed on a QNX machine running the gbuf graphics
manager. The data can be plotted in real time or taken from a summary file
produced by sd_summary .

Plots are produced on console number eight (8) if no arguments are given or
on console number specified by 1console.

The “-e ” option specifies the name of the echo_data task to connect to. By
default the task connects to the program registered under the name
“ /echo_data ”.

The summaries produced consist of a range-time plot of a single radar beam
showing two of the parameters stored in the data produced by fitacf .

The task uses a menu system that can be controlled by either the mouse or the
cursor keys, moving the mouse over an entry in the menu will hi-light it.
Individual entries in the menu can be stepped through and hi-lighted by
pressing the up and down cursor keys. Pressing return or clicking a mouse
button over a hi-lighted entry will select it.

Some entries in the menu are switches that can be either on of off, these are
shown in green when they are off, and white when they are on. Others are push
buttons that trigger other operations such as loading and saving files, these are
shown in yellow. Text fields where numbers and words can be typed in are
shown in white with a blue background. Selecting one of these items will clear
the text field and a new entry can be typed in; pressing enter or escape will
store the new value. Number fields can also be altered by clicking on the
yellow arrow buttons on either side of the field. The left pointing arrow will
decrement the number, the right pointing arrow will increment it.

The task uses three sets of menus. They can be selected by clicking on the
arrow buttons in the menu box at the bottom left of the screen; each menu
relates to different parameters of the plot. The first shows the most commonly
changed parameters such as the frame length and which item of data from
fitacf to plot.

The plot window is divided into two and can display two different items of data
from fitacf . The selected items are hi-lighted in white in the two lists at the
top of the menu.

qltp [-e echo_name] [console]

-e echo_name receive data from the version of echo_data
registered under the name echo_name.

console display the output plot on this graphics console.

qltp

45

The scale to use for the two parameters is selected beneath them. The division
marks of the key are set using “Scale step ”. Values of the parameter that
lie outside the range of the scale are plotted in the appropriate colour for the
limit of that scale.

The “Threshold parameter ”and the cut-off “Level ” are selected in the
right hand column; range/beam points with values of the threshold parameter
below the cut-off level will not be plotted.

The frame length is set in hours and minutes, up to 24 hours. The interval
between division lines on the plot is set using “Frame step ”. The sub
divisions along the bottom of the plot are set using “Frame tick ”.

The start and end ranges of the plot are set in kilometers from the radar site.

The plot consists of a range-time plot for a single beam selected using “Beam”.
 The values of the two parameters selected from the fitacf data are plotted for
this beam. If “Beam” is set to -1 then all the beams will be plotted. The “Beam
persistence ” sets the width of the bar to plot for a beam. Usually this is set
to sixteen as all sixteen beams must be scanned before a new bar will be
plotted.

The second menu shows more general parameters such as the noise and
frequency scales. The entry “Noise max ” is uses as the upper level of the
noise scale and values are assumed to lie between zero and this value.

Usually data will not be plotted of the ground scatter flag is set or the quality
flag is not set. This can be changed by selecting “Ignore Quality Flag ”
or “ Ignore Ground Scatter ” .

The frequency scale is divided into eight bins, frequencies below the value set
for a specific bin will be plotted in the colour selected for that bin. The colour
values range from -1 to 511, with -1 corresponding to black. Colour values less
than or equal to 255 correspond to the first colour scale, and values greater than
255 to the second.

The “Station Name ” string is the title used when labeling the plot.

The final menu controls the offline plotting of files produced by sd_summary .

The “Start time ” is the offset from the start of the image file to begin
plotting data.

Clicking on “ Plot File ” will bring up a filer window showing the currently
available summary files. Selecting a file to plot will prompt the user to switch
to the graphics console. At the end of each frame of data the program will
pause until the user presses a key and then the next full frame of data is plotted
until the end of the file is reached.

The four buttons at the bottom of all of the menus are used for loading and
saving a set of options, entering the real time plot mode and for leaving the
program.

qltp

46

Clicking on “Load ” or “Save ” will open a file selection window which is
divided into two parts. The top part shows the full filename of the current
configuration file and the bottom shows the contents of the directory where the
file resides.

Selecting a file in the bottom part of the window using either the mouse or the
cursor keys will change the file name in the top window. Text can be typed
directly into the top window and will appear at the current text cursor which
can be moved using the left and right cursor keys.

Pressing return will accept the file name in the top window as the name of the
file to either load or save. If this name is a directory then the bottom half of the
window will change to show the contents of the new directory.

Pressing the escape key will abort the load and save operation.

Clicking on the “Run” button will cause the program to enter the real time plot
mode. The user is prompted to change to the graphics console to view the plot.

The plot mode is stopped by pressing a key on the console that the menu is
displayed on.

The locations of files and the graphics mode used by qltp are all stored in the
header “/radops/src/qltp/config.h ”:

The directory path and initial filename for the qltp configuration file is
specified with QLTP_CONFIG_PATH and QLTP_CONFIG_NAME. When a
configuration file is loaded or saved for the first time, the file window will be
opened using this directory and filename.

The initial name and location of the summary file used for off-line plotting is
defined by QLTP_IMAGE_PATH and QLTP_IMAGE_NAME.

/* configuration file for qltp */

#define QLTP_CONFIG_PATH "/radops/scripts"
#define QLTP_CONFIG_NAME "qltp.config"
#define QLTP_IMAGE_PATH "/summary"
#define QLTP_IMAGE_NAME "test.smr"

47

Summary Data Tasks

compress

48

Syntax

Options

Description
The task compress is a client of echo_data that produces highly
compressed summary files, called Colour Map Files (CMP), from the data
generated by fitacf .

The program can be run in either high or low compression modes. In the high
compression mode, set by the “-x ” command line option, the program records
data as an 8-bit number that is an index in the standard SuperDARN colour
table. Files produced in this mode can be used to produce animation’s of the
observed scatter or time series plots of each radar beam much like those
produced by qltp and fitdisp . In the low compression mode set by the “-y”
command line option, the data is recorded as the full 64 bit floating point
numbers.

The data files produced can contain the lambda power, spectral width and
velocity parameters or any combination of the three. The parameters are
selected on the command line using the “-l ”, “ -v ”, or “-w ” options.

Only data with the quality flag set is recorded in the file and a threshold limit,
defined by the “-p ” command line option, is applied to the lag zero power, data
with power below this limit is ignored.

Unlike other summary tasks, which open and close files following requests
from the control program, compress records files of a fixed length specified

compress [-d echo_name] [-e errlog] [-l] [-
v] [-w] [-y] [-x] [-p low_power]
[-h hour] [-m minute] [-b bmnum]
[name]

-d echo_name attaches to the version of echo_data registered
under the name echo_name.

-e err_name sends errors to the task registered under the name
err_name.

-l record lambda power data.
-v record velocity data.
-w record spectral width data.
-y use the low compression rate.
-x use the high compression rate.
-p pwr reject data points with lambda-0 power less than pwr.
-h set the number of hours of data recorded in a file.
-m set the number of minutes of data recorded in a file.
-b bmnum record summary information about beam bmnum in

memory.
 name register the task under this name with the Operating

System.

compress

49

by the “-h ” and “-m” command line options. The “-h ” option sets the number
of hours to record in a file, and the “-m” option the number of minutes.

The task also maintains a buffer in memory that is used to record information
about a single beam specified by the “-b ” option. When the task receives a
message from the ctrig task, the buffer is written to disk in the file
“ /cmp/delta ”.

The “-d ” option selects which version of echo_data the task should attach
to by default the task registered under the name “/echo_data ” is used. The
“-e ” option selects which version of the error log errors should be reported to,
by default errors are sent to the task registered under the name “/errlog ”.

The optional name string specifies the name used to register the task with the
operating system. When a task wishes to locate compress it must use this
name. By default the task is registered under the name “/compress ”.

sd_summary

50

Syntax

Options

Description
The task sd_summary is a client of echo_data that produces summary files
from data produced by fitacf .

The program records in a text file the values of lambda power, lambda width
and velocity for one or two beams per scan.

Only data with the quality flag set is recorded in the file and a threshold limit,
defined by the “-p ” command line option, is applied to the lag zero power, data
with power below this limit is ignored.

By default the program records the data from beam eight (8) of the radar
however the two command line options “-a ” and “-b ” can be used to select
other beams. To record a single beam of data use the “-a ” option on its own, to
record two beams, use both “-a ” and “-b ”.

The “-d ” option selects which version of echo_data the task should attach
to, by default the task registered under the name “/echo_data ” is used. The
“-e ” option selects which version of the error log errors should be reported to,
by default errors are reported to the task registered under the name
“ /errlog ”.

The optional name string specifies the name used to register the task with the
operating system. When a control program wishes to locate sd_summary it
must use this name. By default the task is registered under the name
“ /sd_summary ”.

sd_summary [-d echo_name] [-e errname] [-
a beamA] [-b beamB] [-p pwr] [-n
name]

-d echo_name attaches to the version of echo_data registered
under the name echo_name.

-e err_name sends errors to the task registered under the name
err_name.

-a beamA record information about beamA in the file.
-b beamB record information about beamB in the file.
-p pwr reject data points with lambda-0 power less than pwr.
-n name register the task under this name with the Operating

System.

vlptm

51

Syntax

Options

Description
The task vlptm is a program for the estimation of two-dimensional velocity
vectors on the basis of the line-of-sight velocity data from a single radar.

It consists of a set of C subroutines and look-up files containing the coordinate
data for the particular radar. The task runs concurrently with fitacf ; it
receives velocity data from each scan and outputs the velocity vector (in
geomagnetic coordinates) to a file. The file is the basis for the generation of the
daily velocity clock-dial plot and is also the source for the transfer of the key
parameter data to CDHF.

The logic of vlptm is based on the assumption of quasi-uniformity of the
convection along a contour of constant magnetic latitude. The set of beam
directions then samples the velocity at a given latitude from a variety of angles
and the full two-dimensional vector can be estimated in an optimal sense be
fitting a cosine dependence to the variation of the line-of-sight velocity with the
look angle. The quality of the fitting varies. This is flagged by a quality index,
qflag, defined by:

qflag=2.5*(qn+qr)

Where:

qn=(1-(1/11)*(np-5)
qr=(1-(1/55)*(55-rms)

Where np is the number of points contributing to the fit and rms is the root-
mean-square error on the fit. Normally qflag varies from (0) (the best) to (4) for
acceptable fits.

Less satisfactory fits may also be listed, with qflag values that range from (5) to
(t). In this case the lower limit for np (5) and/or the limit for dropping points
(1/3 of the total number on the contour) has been reached but the fit may be
unsatisfactory for the following reasons:

vlptm [-a echo_name] [-e errlog]

-a echo_name attaches to the version of echo_data registered
under the name echo_name.

-e err_name sends errors to the task registered under the name
err_name.

qflag=5 unable to meat criterion on rms (55 m/s).
qflag=6 fit is not superior to fit that assumes constant velocity
qflag=7 more than half the points are from beams >10. (GB

Only).

vlptm

52

The -a option selects which version of echo_data the task should attach to,
by default the task registered under the name “/echo_data ” is used. The -e
option selects which version of the error log errors should be reported to, by
default errors are reported to the task registered under the name “/errlog ”.

53

Internet Access Software

client

54

Syntax

Options

Description
The client task is a simple diagnostic client of the server task. The source
code can be used as a starting point for more sophisticated clients.

The task connects to the server task running on the specified host and port
number and waits to receive blocks of data. When a block is received, the task
prints out the ranges for which data is available and the velocities for those
ranges.

client host port

host the name of the remote host to attach to.
port the TCP/IP port number of the server task to attach to

on the remote host.

echo_dataIP

55

Syntax

Options

Description
The task echo_dataIP is a version of echo_data that receives its data
from a remote server task using TCP/IP protocols. The data received is a sub-
set of that produced by fitacf . Tasks that register themselves will
automatically receive the next block of data as it is received from the server.

When a task wishes to register itself it sends a message containing a text string
to associate with it. The task echo_dataIP adds the process id (pid) of the
registering task and the string to a table stored in memory.

Each time echo_dataIP receives a block of data from the server it
transforms it into the standard message types used by the Radar software and
attempts to send it in turn to each task recorded in the table. If a task has died
then echo_dataIP will remove that entry from the table and move on to the
next entry in the list.

If the task does not reply to the message within the time allocated for a single
task as set by the “-s ” option, then echo_dataIP will time out and move
onto the next task in the table. If the echo_dataIP cannot send the message
to all the tasks within the total allocated time as set by the “-t ” option, then it
will not send to the remaining tasks in the list. When the next block of data is
received, the task will try sending to all the tasks again. By default, the time-
out period for a single task is one (1) second, and the total time-out period is
five (5) seconds.

The “-n ” option specifies the name used to register the task with the operating
system. When another task wishes to locate echo_dataIP it must use this
name. By default the task is registered under the name “/echo_dataIP ”.

The “-e ” option specifies the name of the error log that the task reports errors
and warnings to. By default errors are sent to the task registered under the
name “/errlog ”.

echo_dataIP [-s stime] [-t ttime] [-n
echo_name] [-e err_name] host port

-s stime the time-out period for a single task.
-t ttime the time-out period for all the tasks.
-n echo_name register the task under this name with the Operating

System.
-e err_name sends errors to the task registered under the name

err_name.
host the name of the remote host to attach to.
port the TCP/IP port number of the server task to attach to

on the remote host.

server

56

Syntax

Options

Description
The server task allows Radar data to be transmitted over the Internet in real
time. The task receives data produced by fitacf from echo_data and
passes it on to client tasks running on remote systems using the TCP/IP
protocol.

The data transmitted consists of the radar parameter block and the lambda
power, spectral width, and velocity components. A 3dB Threshold is applied to
the lag zero power and data below this threshold is ignored.

When running, server listens on the specified port for connection requests
from other programs. When a client is accepted, radar data will be compressed
and transmitted to it after each integration period.

There is an upper limit of sixteen simultaneous clients that can be connected to
the server at any one time.

The “-d ” option selects which version of echo_data the task should attach
to by default the task registered under the name “/echo_data ” is used. The
“-e ” option selects which version of the error log errors should be reported to,
by default errors are sent to the task registered under the name “/errlog ”.

The optional name string specifies the name used to register the task with the
operating system. When a task wishes to locate server it must use this name.
By default the task is registered under the name “data_server ”.

server [-n name] [-d echo_data] [-e
errlog] [port]

-n name register the task under this name with the Operating
System.

-d echo_name attaches to the version of echo_data registered
under the name echo_name.

-e err_name sends errors to the task registered under the name
err_name.

port the TCP/IP port number of the to attach to on the local
host.

57

Off-line Support Software

close_file

58

Syntax

Options

The close_file task sends a close message to the specified task forcing it to
close any open files.

close_file task_name

task_name send the close message to task_name.

cmp_fit

59

Syntax

Options

The cmp_fit task reads the fit file fit_file, and produces a Colour Map
(CMP) file on the standard output, stdout .

The program can be run in either high or low compression modes. In the high
compression mode, set by the “-x ” command line option, the program
transforms data into an 8-bit number that is an index in the standard
SuperDARN colour table. Files produced in this mode can be used to produce
animation’s of the observed scatter or time series plots of each radar beam
much like those produced by qltp and fitdisp . In the low compression
mode set by the “-y” command line option, the data is recorded as the full 64
bit floating point numbers.

The data files produced can contain the lambda power, spectral width and
velocity parameters or any combination of the three. The parameters are
selected on the command line using the “-l ”, “ -v ”, or “-w ” options.

Only data with the quality flag set is recorded in the file and a threshold limit,
defined by the “-p ” command line option, is applied to the lag zero power, data
with power below this limit is ignored.

By specifying the “-b ” option an output file containing data for only the
specified beam bmnum, can be produced.

cmp_fit [-l] [-v] [-w] [-y] [-x] [-p
low_power] [-b bmnum] fit_file

-l store lambda power in the output file.
-v store velocity in the output file.
-w store spectral width in the output file.
-y use the low compression format.
-x use the high compression format.
-p low_power apply a threshold of low_power to the lag-zero power.
-b bmnum record only information about beam number bmnum.
fit_file the filename of the fit file to read.

ctrig

60

Syntax

Options

The ctrig task sends a message to the compress task causing it to write the
last few hours of data in a file. The file is called “/cmp/delta ” and contains
data for a single beam.

The file produced can be used to provide a quick “snap-shot” of the radar
scatter without having to wait until the end of the day for the full summary data
set.

The optional cmp_name string specifies the name of the compress task to
send the signal to. By default the task registered under the name
“ /compress ” is used.

ctrig [cmp_name]

cmp_name send the trigger message to the compress task
registered under the name cmp_name.

plot_cmp

61

Syntax

Options

The task plot_cmp plots the contents of a Colour Map file (CMP) as a
simple animation. The plot has a number of overlays including the outline of
the continents, the field of views of the other Radars and a set of user defined
text labels.

The task uses the graphics console driver gbuf and the console to plot on is
specified using the “-c ” command line option. By default graphics console
eight (8) is used.

The parameter that the program will plot, either lambda power, velocity or
spectral width, can be set using the “-p ”, “ -v ”, or “-w ” command line option.
By default velocity is plotted.

The time in milliseconds between successive frames of the animation can be set
using the “-d ” option.

plot_cmp [-p] [-v] [-w] [-f] [-c console]
[-d delay] cmp_file

-p plot lambda power data.
-v plot velocity data.
-w plot spectral width data.
-f apply a simple filter to smooth the data.
-c console plot the data on graphics console specified by console.
-d delay specify the delay in milliseconds between frames.
cmp_file the name of the cmp file to read.

tplot_cmp

62

Syntax

Options

The task tplot_cmp plots the contents of a Colour Map file (CMP) as a time
series plot on a graphics console.

The task uses the graphics console driver gbuf and the console to plot on is
specified using the “-c ” command line option. By default graphics console
eight (8) is used.

The program will plot a 24 hour period starting at the first record encountered
in the input file. The “-s ”, and “-e ” options can be used to override the start
time and the length of time to plot. The times should be expressed in the form:

hh: mm

Where:

The beam number to be plotted can be set using the -b option, by default beam
eight (8) is plotted.

tplot_cmp [-b bmnum] [-c console] [-s start]
[-e extent] cmp_file

-b bmnum plot data for beam number bmnum.
-c console plot the data on graphics console specified by console.
-s start start the plot at the time in hours and minutes given by

start, expressed as hh:mm, where hh is the number of
hours, and mm is the number of minutes.

-e extent plot the period of time of length extent, expressed as
hh:mm, where hh is the number of hours, and mm is
the number of minutes

cmp_file the name of the cmp file to read.

hh hours
mm minutes.

63

Diagnostic Utilities

a_d_test

64

Syntax

Options

The task a_d_test is a simple diagnostic task for the Analogue to Digital
Converter (ADC) driver a_d_drive .

It performs some simple software triggered A/D conversions and prints the
results on the display.

The optional a_d_name string specifies the name of the a_d_drive task to
test. By default the task registered under the name “/a_d_drive ” is tested.

a_d_test [a_d_name]

a_d_name test the version of a_d_drive registered under the name
a_d_name.

test_dio

65

Syntax

Options

The task test_dio is a very simple diagnostic program for the DIO driver
radops_dio.

The task allows the user to send commands directly to radops_dio . When
the program is started it displays a menu of the commands available:

1. reset_xt
2. send_tsg
3. set_beam
4. set_freq
5. set_gain
6. download timing sequence
7. verify_id
8. set antenna mode
9. set test mode
10. get status
11. set filter mode
99. EXIT
enter the function number :

The user types the number of the function to be performed, or 99 to exit the
program, and presses <enter> . Depending on the command chosen they will
then be prompted for another input.

Once the command has been executed the a status code is printed on the
console. If the command was successful this will be zero (0).

The optional dio_name string specifies the name of the radops_dio task to
test. By default the task registered under the name “/radops_dio ” is used.

test_dio [dio_name]

dio_name test the version of radops_dio registered under the
name dio_name.

test_echo

66

Syntax

Options

The task test_echo allows echo_data and its client tasks to be tested.

 The program reads in data records from a fit file generated by fitacf and
passes them to echo_data . When the end of the file is reached the program
will start at the beginning again in a continuous loop.

The “-s ” option can be used to simulate data from a particular radar site. The
single letter radar identifier stored in the parameter block is subsituted for the
one supplied on the command line.

The “-e ” option specifies which version of echo_data to send data to. By
default data will be sent to the task registered under the name “/echo_data ”.

test_echo [-e echo_name] [-s station] fit_file

-e echo_name send data to the version of echo_data registered under
the name echo_name.

-s station Change the Radar station identifier letter stored in the
Radar parameter block to station.

fit_file The filename of the fit file to read.

test_gbuf

67

Syntax

Options

The task gbuf_test is a very simple diagnostic program for the graphics
console driver gbuf.

The task draws some simple graphics on the screen.

The optional console number specifies the console on which the test should be
performed. By default console number eight (8) is used.

test_gbuf [console]

console plot graphics on the console number console.

68

Software Version Control

control_mod

69

Syntax

Options

Description
The task control_mod is a utility used for checking the version numbers in
the various modules in the Radar software source code.

It compares the Revision Control System (RCS), information stored in each
module against a master list stored in the file filename. Each module must have
the RCS keyword “$Revision$ ” somewhere in the file:

The master list, usually called “control.info ”, is a list of modules together
with the expected revision number:

Lines starting with a ‘#’ are treated as comments and ignored. Each line
contains the name of the module followed by a space or tab and then the
expected revision number.

The master list should also be maintained under RCS and include the
“$Revision$ ” keyword, this is used to generate a master version number for
the program.

control_mod filename

filename the filename of the module version file.

/* module.c
 ======= */

/* Insert RCS revision keyword here:

 $Revision$
 */

/* Program starts here */
.
.

$Revision$
#

module.c 1.1
main.c 1.3
.
.

control_mod

70

The task scans the list and checks for the existence of each module and that the
revision numbers agree. If a discrepancy is found the program will stop and
report the error.

When all the modules have been checked, the task produces a master version
header on stdout:

The output can be redirected to a file and included in the source code to access
the version numbers.

/*version.h*/
 ========

#define VERSION x.y
#define VSTRING “ x. y”
#define VMAJOR x
#define VMINOR y

logo

71

Syntax

Options

Description
The task logo is a utility for displaying the Radar software title page, the radar
station, and the master version number of the software. The master version
number is defined in the header
“ /radops/include/radops_version.h ”.

The “-f ” command line option will adds a special effect that fades the title
page in. The “-d ” option sets the length of time in seconds that the title page is
displayed.

To display the version information in text mode only use the “-t ” option.

logo [-f] [-t] [-d time]

-f fade the logo using a special effect.
-t run in text mode only.
-d time wait the specified number of seconds before returning

control to the user.

72

The Control Library

73

Data Structures

radops_parms

74

Syntax

Description
The structure radops_parms contains the radar parameters, it has the
following members.

char MAJOR,MINOR; revision numbers.
short int NPARM; total number of 16 bit words in the

block.
short int ST_ID; station ID.
short int YEAR; year = 19XX
short int MONTH; month.
short int DAY; day.
short int HOUR; hour.
short int MINUT; minute.
short int SEC; second.
short int TXPOW; transmitted power (kW).
short int NAVE; number of times pulse was transmitted.
short int ATTEN; attenuation setting of receiver.
short int LAGFR; the lag to the first range (microsecs.).
short int SMSEP; the sample separation (microsecs.).
short int ERCOD; error flag.
short int AGC_STAT; AGC status word.
short int LOPWR_STAT; low power status word.
short int NBAUD; number of elements in a pulse code.
long int NOISE; noise level.
long int radops_sys_resL; reserved for future use.
short int radops_sys_resS; reserved for future use.
short int RXRISE; receiver rise time.
short int INTT; integration period (secs.).
short int TXPL; the pulse length (microsecs.).
short int MPINC; the basic lag separation (microsecs.).
short int MPPUL; the number of pulses in the pulse

pattern.
short int MPLGS; the number of lags in the pulse pattern.
short int NRANG; the number of range gates.
short int FRANG; distance to the first range (km.).
short int RSEP; range separation (km.).
short int BMNUM; beam number.
short int XCF; cross-correlation flag.
short int TFREQ; transmitted frequency (kHz).
short int SCAN; scan mode flag.
long int MXPWR; maximum power allowed.
long int LVMAX; maximum noise allowed.
long int usr_resL1; user defined long word 1.
long int usr_resL2; user defined long word 2.
short int CP; Program ID.

short int usr_resS1; user defined short word 1.
short int usr_resS2; user defined short word 2.
short int usr_resS3; user defined short word 3.

#include “radops.h”

radops_parms

75

The user can set the first range gate by specifying FRANG in kilometers. The
libraries then use this value to set the lag to the first range in microseconds.

Similarly the user sets the range separation by specifying RSEP in kilometers.
The libraries then use this value to calculate SMSEP in microseconds.

During the gain setting routine, the libraries will attempt to add enough
attenuation so that the maximum reflected power is less than MXPWR. If this is
not possible the error code (ERCOD) is set to indicate the receiver is over-
loaded.

During the clear frequency search, the library routine will find the clearest
frequency in the range specified. The noise level determined for that frequency
will be stored in the parameter NOISE. If NOISE is greater then LVMAX, the
error code will be set to indicate that no clear frequency could be found.

rawdata

76

Syntax

Description
The structure rawdata has the following members:

struct radops_parms PARMS; radar parameter block.
short int PULSE_PATTERN[PULSE_PAT_LEN]; transmitted pulse

pattern.
short int LAG_TABLE[2][LAG_TAB_LEN]; lag table.
char combf[COMBF_SIZE]; comment buffer.
long pwr0[MAX_RANGE]; lag-0 power.
long acfd[MAX_RANGE][LAG_TAB_LEN][2]; calculated raw ACF.
long xcfd[MAX_RANGE][LAG_TAB_LEN][2]; calculated raw XCF.

The values PULSE_PAT_LEN, LAG_TAB_LEN, COMBF_SIZE and
MAX_RANGE correspond to:

PULSE_PAT_LEN 16
LAG_TAB_LEN 48
COMB_SIZE 80
MAX_RANGE 75

The number of lags in the pulse pattern is the true number of lags which are
present in the table LAG_TABLE. It is NOT the value of the maximum lag. If
the maximum lag is 33 but only 22 of the 33 lags are actually calculated then
MPLGS is 22.

#include “radops.h”

fitdata

77

Syntax

Description
The structure fitdata has the following members:

struct radops_parms prms; radar parameter block.
struct range_data rng[MAX_RANGE] the fitted data.

The structure range_data has the following members:

short int qflg; the quality flag.
short int gsct; the ground scatter flag.
double p_0; the lag 0 power.
double p_l; the lambda power.
double p_s; the sigma power.
double w_l; the lambda width.
double w_s; the sigma width.
double v; the velocity.
double v_err; the velocity error.
double sdev_l; the standard deviation of the lambda fit.
double sdev_s; the standard deviation of the sigma fit.
double sdev_phi; the standard deviation of the phase fit.

#include “fit_data.h”

78

a_d_drive.o

do_scan

79

Syntax

Description

The do_scan function sends a message to the a_d_drive task whose
process id is task_id, requesting that an A/D scan should begin.

The transfer uses DMA buffer number buffer with zero being the first buffer.
The number of bytes to transfer is bytes, using between 1 and 4 channels as
specified by channels. If mode is equal to zero then the transfer is hardware
triggered, otherwise software triggering is used.

Returns
Returns zero (0) on success, or (-1) if an error occurs and raderr is set.

Errors
When an error occurs, raderr contains a value indicating the type of error that
occurred.

RADERR_SIGNAL_FAIL the time out signal could not be claimed.
The signal SIGUSR1 is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL a timer could not be created. A timer is set
to trigger a signal after the required time-
out period.

RADERR_MSG_FAIL the message was interrupted.
RADERR_TME_OUT the message timed out.
RADERR_AD_FAIL the task a_d_drive failed to complete

this command.

#include “a_d_drive.h”
int do_scan(pid_t task_id,

int buffer,
int bytes,
int mode,
int channels);

get_buf_adr

80

Syntax

Description

The get_buf_adr function sends a message to the a_d_drive task whose
process id is task_id, requesting the address of the DMA buffer numbered
buffer.

Returns
Returns a pointer to the requested DMA buffer, or (NULL) if an error occurs
and raderr is set.

Errors
When an error occurs, raderr contains a value indicating the type of error that
occurred.

RADERR_SIGNAL_FAIL the time out signal could not be claimed.
The signal SIGUSR1 is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL a timer could not be created. A timer is set
to trigger a signal after the required time-
out period.

RADERR_MSG_FAIL the message was interrupted.
RADERR_TME_OUT the message timed out.
RADERR_ECHO_ERR the task a_d_drive failed to complete

this command.

#include “a_d_drive.h”
void *get_buf_adr(pid_t task_id,

short int buffer);

get_buf_num

81

Syntax

Description

The get_buf_num function sends a message to the a_d_drive task whose
process id is task_id, requesting the number of DMA buffers the task has.

Returns
Returns the number of DMA buffers that the a_d_drive task has, or (-1) if
an error occurs and raderr is set.

Errors
When an error occurs, raderr contains a value indicating the type of error that
occurred.

RADERR_SIGNAL_FAIL the time out signal could not be claimed.
The signal SIGUSR1 is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL a timer could not be created. A timer is set
to trigger a signal after the required time-
out period.

RADERR_MSG_FAIL the message was interrupted.
RADERR_TME_OUT the message timed out.
RADERR_AD_FAIL the task a_d_drive failed to complete

this command.

#include “a_d_drive.h”
int get_buf_num(pid_t task_id);

get_buf_size

82

Syntax

Description

The get_buf_size function sends a message to the a_d_drive task
whose process id is task_id, requesting the size of the DMA buffers the task
has.

Returns
Returns the size in bytes of the DMA buffers that the a_d_drive task has, or
(-1) if an error occurs and raderr is set.

Errors
When an error occurs, raderr contains a value indicating the type of error that
occurred.

RADERR_SIGNAL_FAIL the time out signal could not be claimed.
The signal SIGUSR1 is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL a timer could not be created. A timer is set
to trigger a signal after the required time-
out period.

RADERR_MSG_FAIL the message was interrupted.
RADERR_TME_OUT the message timed out.
RADERR_AD_FAIL the task a_d_drive failed to complete

this command.

#include “a_d_drive.h”
int get_buf_size(pid_t task_id);

get_scan_reset

83

Syntax

Description

The get_scan_reset function sends a message to the a_d_drive task
whose process id is task_id, requesting the process id (pid) of the interrupt
proxy.

Whenever a DMA transfer is completed the proxy is triggered allowing the
driver to detect the end of the transfer.

Returns
Returns the process id of the proxy on success, or (-1) if an error occurs and
raderr is set.

Errors
When an error occurs, raderr contains a value indicating the type of error that
occurred.

RADERR_SIGNAL_FAIL the time out signal could not be claimed.
The signal SIGUSR1 is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL a timer could not be created. A timer is set
to trigger a signal after the required time-
out period.

RADERR_MSG_FAIL the message was interrupted.
RADERR_TME_OUT the message timed out.
RADERR_ECHO_ERR the task a_d_drive failed to complete

this command.

#include “a_d_drive.h”
pid_t get_scan_reset(pid_t task_id);

get_scan_status

84

Syntax

Description

The get_scan_status function sends a message to the a_d_drive task
whose process id is task_id, requesting the status of the last DMA transfer.

Returns
Returns SCAN_OK if the transfer was successful or SCAN_ERROR if the
transfer failed. If an error occurred then (-1) is returned and raderr is set.

Errors
When an error occurs, raderr contains a value indicating the type of error that
occurred.

RADERR_SIGNAL_FAIL the time out signal could not be claimed.
The signal SIGUSR1 is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL A timer could not be created. A timer is set
to trigger a signal after the required time-
out period.

RADERR_MSG_FAIL The message was interrupted.
RADERR_TME_OUT The message timed out.
RADERR_AD_FAIL The task a_d_drive failed to complete

this command.

#include “a_d_drive.h”
int get_scan_status(pid_t task_id);

scan_reset

85

Syntax

Description

The scan_reset function kicks the proxy attached to the a_d_drive task
whose process id is task_id. This has the affect of resetting the task when a
DMA transfer fails.

Returns
Returns zero (0) on success, or (-1) if an error occurs and raderr is set.

Errors
When an error occurs, raderr contains a value indicating the type of error that
occurred.

RADERR_SIGNAL_FAIL the time out signal could not be claimed.
The signal SIGUSR1 is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL a timer could not be created. A timer is set
to trigger a signal after the required time-
out period.

RADERR_MSG_FAIL the message was interrupted.
RADERR_TME_OUT the message timed out.
RADERR_ECHO_ERR the task a_d_drive failed to complete

this command.

#include “a_d_drive.h”
int scan_reset(pid_t task_id);

86

dio.o

init_xt_pid

87

Syntax

Description
The init_xt_pid function sends a message to the radops_dio task
identified by the process id task_id, resetting the DIO card and clearing the
timing sequence buffers.

Returns
Returns zero (0) on success, or (-1) if an error occurs and raderr is set

Errors
When an error occurs, raderr contains a value indicating the type of error that
occurred.

RADERR_SIGNAL_FAIL the time out signal could not be claimed.
The signal SIGUSR1 is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL a timer could not be created. A timer is set
to trigger a signal after the required time-
out period.

RADERR_MSG_FAIL the message was interrupted.
RADERR_TME_OUT the message timed out.
RADERR_DIO_FAIL the task radops_dio failed to complete

this command.

#include “radops_dio.h”
int init_xt_pid(pid_t task_id);

send_fclr

88

Syntax

Description
The send_flcr function sends a message to the radops_dio task
identified by the process id task_id, telling it to perform a clear frequency
search using the pulse sequence stored in the buffer id.

The sequence is transmitted at each frequency in the table pointed to by
frq_table. The table has frq_num elements.

Returns
Returns zero (0) on success, or (-1) if an error occurs and raderr is set

Errors
When an error occurs, raderr contains a value indicating the type of error that
occurred.

RADERR_SIGNAL_FAIL the time out signal could not be claimed.
The signal SIGUSR1 is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL a timer could not be created. A timer is set
to trigger a signal after the required time-
out period.

RADERR_MSG_FAIL the message was interrupted.
RADERR_TME_OUT the message timed out.
RADERR_DIO_FAIL the task radops_dio failed to complete

this command.

#include “radops_dio.h”
int send_fclr(pid_t task_id,

unsigned char id,
short int frq_num,
short int *freq_table);

send_tsg

89

Syntax

Description
The send_tsg function sends a message to the radops_dio task identified
by the process id task_id, telling it to transmit the pulse sequence stored in the
buffer id.

Returns
Returns zero (0) on success, or (-1) if an error occurs and raderr is set

Errors
When an error occurs, raderr contains a value indicating the type of error that
occurred.

RADERR_SIGNAL_FAIL the time out signal could not be claimed.
The signal SIGUSR1 is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL a timer could not be created. A timer is set
to trigger a signal after the required time-
out period.

RADERR_MSG_FAIL the message was interrupted.
RADERR_TME_OUT the message timed out.
RADERR_DIO_FAIL the task radops_dio failed to complete

this command.

#include “radops_dio.h”
int send_tsg(pid_t task_id,

unsigned char id);

send_tsg_no_stat

90

Syntax

Description
The send_tsg_no_stat function sends a message to the radops_dio
task identified by the process id task_id, telling it to transmit the pulse
sequence stored in the buffer id. The status information is not updated.

Returns
Returns zero (0) on success, or (-1) if an error occurs and raderr is set

Errors
When an error occurs, raderr contains a value indicating the type of error that
occurred.

RADERR_SIGNAL_FAIL the time out signal could not be claimed.
The signal SIGUSR1 is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL a timer could not be created. A timer is set
to trigger a signal after the required time-
out period.

RADERR_MSG_FAIL the message was interrupted.
RADERR_TME_OUT the message timed out.
RADERR_DIO_FAIL the task radops_dio failed to complete

this command.

#include “radops_dio.h”
int send_tsg_no_stat(pid_t task_id,

unsigned char id);

set_antenna_pid

91

Syntax

Description
The set_antenna_pid function sends a message to the radops_dio task
identified by the process id task_id, setting the antenna number to anum.

Returns
Returns zero (0) on success, or (-1) if an error occurs and raderr is set

Errors
When an error occurs, raderr contains a value indicating the type of error that
occurred.

RADERR_SIGNAL_FAIL the time out signal could not be claimed.
The signal SIGUSR1 is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL a timer could not be created. A timer is set
to trigger a signal after the required time-
out period.

RADERR_MSG_FAIL the message was interrupted.
RADERR_TME_OUT the message timed out.
RADERR_DIO_FAIL the task radops_dio failed to complete

this command.

#include “radops_dio.h”
int set_antenna_pid(short int anum,

pid_t task_id);

set_beam_pid

92

Syntax

Description
The set_beam_pid function sends a message to the radops_dio task
identified by the process id task_id, setting the beam number to beam.

Returns
Returns zero (0) on success, or (-1) if an error occurs and raderr is set

Errors
When an error occurs, raderr contains a value indicating the type of error that
occurred.

RADERR_SIGNAL_FAIL the time out signal could not be claimed.
The signal SIGUSR1 is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL a timer could not be created. A timer is set
to trigger a signal after the required time-
out period.

RADERR_MSG_FAIL the message was interrupted.
RADERR_TME_OUT the message timed out.
RADERR_DIO_FAIL the task radops_dio failed to complete

this command.

#include “radops_dio.h”
int set_beam_pid(unsigned char beam,

pid_t task_id);

set_filter_pid

93

Syntax

Description
The set_filter_pid function sends a message to the radops_dio task
identified by the process id task_id, setting the filter mode to filter.

Returns
Returns zero (0) on success, or (-1) if an error occurs and raderr is set

Errors
When an error occurs, raderr contains a value indicating the type of error that
occurred.

RADERR_SIGNAL_FAIL the time out signal could not be claimed.
The signal SIGUSR1 is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL a timer could not be created. A timer is set
to trigger a signal after the required time-
out period.

RADERR_MSG_FAIL the message was interrupted.
RADERR_TME_OUT the message timed out.
RADERR_DIO_FAIL the task radops_dio failed to complete

this command.

#include “radops_dio.h”
int set_filter_pid(unsigned char filter,

pid_t task_id);

set_freq_pid

94

Syntax

Description
The set_freq_pid function sends a message to the radops_dio task
identified by the process id task_id, setting the frequency to freq.

Returns
Returns zero (0) on success, or (-1) if an error occurs and raderr is set

Errors
When an error occurs, raderr contains a value indicating the type of error that
occurred.

RADERR_SIGNAL_FAIL the time out signal could not be claimed.
The signal SIGUSR1 is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL a timer could not be created. A timer is set
to trigger a signal after the required time-
out period.

RADERR_MSG_FAIL the message was interrupted.
RADERR_TME_OUT the message timed out.
RADERR_DIO_FAIL the task radops_dio failed to complete

this command.

#include “radops_dio.h”
int set_freq_pid(short int freq,

pid_t task_id);

set_test_mode_pid

95

Syntax

Description
The set_test_mode_pid function sends a message to the radops_dio
task identified by the process id task_id, switching the test mode on and off.

Setting mode to zero (0) turns the test mode off, setting it to one (1), turns it on.

Returns
Returns zero (0) on success, or (-1) if an error occurs and raderr is set

Errors
When an error occurs, raderr contains a value indicating the type of error that
occurred.

RADERR_SIGNAL_FAIL the time out signal could not be claimed.
The signal SIGUSR1 is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL a timer could not be created. A timer is set
to trigger a signal after the required time-
out period.

RADERR_MSG_FAIL the message was interrupted.
RADERR_TME_OUT the message timed out.
RADERR_DIO_FAIL the task radops_dio failed to complete

this command.

#include “radops_dio.h”
int set_test_mode_pid(

unsigned char mode,
pid_t task_id);

set_tsg_pid

96

Syntax

Description
The set_tsg_pid function sends a message to the radops_dio task
identified by the process id task_id, downloading a timing sequence into the
buffer id. Each entry in the array code_byte is the is a code to transmit, the
corresponding entry in the array rep_byte is the number of times to repeat the
code. Each array should be length bytes long.

Returns
Returns zero (0) on success, or (-1) if an error occurs and raderr is set

Errors
When an error occurs, raderr contains a value indicating the type of error that
occurred.

RADERR_SIGNAL_FAIL the time out signal could not be claimed.
The signal SIGUSR1 is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL a timer could not be created. A timer is set
to trigger a signal after the required time-
out period.

RADERR_MSG_FAIL the message was interrupted.
RADERR_TME_OUT The message timed out.
RADERR_DIO_FAIL the task radops_dio failed to complete

this command.

#include “radops_dio.h”
int set_tsg_pid(short int length,

unsigned char id,
char *code_byte,
char *rep_byte,
pid_t task_id);

verify_id_pid

97

Syntax

Description
The verify_id_pid function sends a message to the radops_dio task
identified by the process id task_id, verifying that the pulse sequence identified
by id exits.

Returns
Returns the length of the pulse sequence if it exists, zero (0) if it does not, or (-
1) if an error occurs and raderr is set

Errors
When an error occurs, raderr contains a value indicating the type of error that
occurred.

RADERR_SIGNAL_FAIL the time out signal could not be claimed.
The signal SIGUSR1 is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL a timer could not be created. A timer is set
to trigger a signal after the required time-
out period.

RADERR_MSG_FAIL the message was interrupted.
RADERR_TME_OUT the message timed out.
RADERR_DIO_FAIL the task radops_dio failed to complete

this command.

#include “radops_dio.h”
int verify_id_pid(unsigned char id,

pid_t task_id);

98

get_fit.o

get_fit

99

Syntax

Description
The get_fit function sends a message to the fit_buffer task identified
by fit_buf_name, requesting the most recent block of fitted data.

If the data is available it is stored in the structure pointed to by fit_data.

If fit_buf_name is NULL then the default name of “/fit_buffer ” will be
used.

Returns
Returns the record number of the block of data returned. This corresponds to
the total number of integration periods processed by fitacf since the last file
was opened. If an error occurs (-1) is returned and raderr is set.

Errors
When an error occurs, raderr contains a value indicating the type of error that
occurred.

RADERR_SIGNAL_FAIL the time out signal could not be claimed.
The signal SIGUSR1 is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL a timer could not be created. A timer is set
to trigger a signal after the required time-
out period.

RADERR_MSG_FAIL the message was interrupted.
RADERR_TME_OUT the message timed out.
RADERR_FBUF_ERR the task fit_buffer failed to complete

this command.

#include “radops.h”
#include “fitdata.h”
#include “get_fit.h”
int get_fit(char *fit_buf_name,

struct fitdata *fit_data);

100

get_status.o

get_status

101

Syntax

Description
The get_status function sends a message to the radops_dio task
requesting the AGC and low power status words.

The values are stored in the raw data structure pointed to by raw_data. If clear
is not equal to zero then the status words are reset to zero once they have been
read.

Returns
Returns zero (0) on success, or (-1) if an error occurs and raderr is set

Errors
When an error occurs, raderr contains a value indicating the type of error that
occurred.

RADERR_NO_TASK the task radops_dio is not running.
RADERR_SIGNAL_FAIL the time out signal could not be claimed.

The signal SIGUSR1 is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL a timer could not be created. A timer is set
to trigger a signal after the required time-
out period.

RADERR_MSG_FAIL the message was interrupted.
RADERR_TME_OUT the message timed out.
RADERR_DIO_FAIL the task radops_dio failed to complete

this command.

#include “radops.h”
#include “get_status.h”
int get_status(struct rawdata*raw_data,

int clear);

get_status_pid

102

Syntax

Description
The get_status_pid function sends a message to the radops_dio task
identified by the process id task_id, requesting the AGC and low power status
words.

 The values are stored in the raw data structure pointed to by raw_data. If clear
is not equal to zero then the status words are reset to zero once they have been
read.

Returns
Returns zero (0) on success, or (-1) if an error occurs and raderr is set

Errors
When an error occurs, raderr contains a value indicating the type of error that
occurred.

RADERR_SIGNAL_FAIL the time out signal could not be claimed.
The signal SIGUSR1 is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL a timer could not be created. A timer is set
to trigger a signal after the required time-
out period.

RADERR_MSG_FAIL the message was interrupted.
RADERR_TME_OUT the message timed out.
RADERR_DIO_FAIL the task radops_dio failed to complete

this command.

#include “radops.h”
#include “get_status.h”
int get_status_pid(

struct rawdata*raw_data,
int clear,
pid_t task_id);

103

log_error.o

log_error

104

Syntax

Description
The log_error function sends a message to the errlog task identified by
errlog, containing the error message string pointed to by buffer. If name is not
NULL the error log will include the string together with the error message.

If errlog is NULL the default name of “/errlog ” will be used.

Returns
Returns zero (0) on success, or (-1) if an error occurred.

#include “log_error.h”
int log_error(char *errlog,

char *name,
char *buffer);

105

message.o

message

106

Syntax

Description
The message function sends a message pointed to by smsg to the task
registered under the name task. Any reply is placed in the buffer rmsg. The size
of the sent message will be snbytes while the size of the reply will be truncated
to a maximum of rnbytes.

If time equals zero then the calling process will wait indefinitely for a reply. If
time is greater than zero then the process will wait time seconds before
returning.

The number of bytes send will be the minimum of that specified by the sender
and receiver.

Returns
Returns zero (0) on success. If an error occurs then (-1) is returned and raderr
is set.

Errors
When an error occurs, raderr contains a value indicating the type of error that
occurred.

RADERR_NO_TASK no task is registered with that name.
RADERR_SIGNAL_FAIL the time out signal could not be claimed.

The signal SIGUSR1 is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL a timer could not be created. A timer is set
to trigger a signal after the required time-
out period.

RADERR_MSG_FAIL the message was interrupted.
RADERR_TME_OUT the message timed out.

#include “message.h”
int message(char *task,

double time,
void *smsg,
void *rmsg,
unsigned snbytes,
unsigned rnbytes);

message_array

107

Syntax

Description
The message_array function sends an array of messages pointed to by the
array smsg to the task registered under the name task. Any replies are placed in
the buffers pointed to by the array rmsg. The size of each sent message will be
taken from the corresponding entry in the array snbytes while the size of the
reply will be truncated to a maximum of the corresponding entry in the array
rnbytes.

If time equals zero then the calling process will wait indefinitely for a reply. If
time is greater than zero then the process will wait time seconds before
returning.

The number of bytes send will be the minimum of that specified by the sender
and receiver.

The function scans the arrays smsg and rmsg, which must be NULL terminated
to determine how many buffers to send and receive.

Returns
Returns zero (0) on success. If an error occurs then (-1) is returned and raderr
is set.

Errors
When an error occurs, raderr contains a value indicating the type of error that
occurred.

RADERR_NO_TASK no task is registered with that name.
RADERR_SIGNAL_FAIL the time out signal could not be claimed.

The signal SIGUSR1 is generated after a
time-out to interrupt the message.

RADERR_NO_MEM memory could not be allocated to store the
messages.

RADERR_TIMER_FAIL a timer could not be created. A timer is set
to trigger a signal after the required time-
out period.

RADERR_MSG_FAIL the message was interrupted.
RADERR_TME_OUT The message timed out.

#include “message.h”
int message_array(char *task,

double time,
void **smsg,
void **rmsg,
unsigned *snbytes,
unsigned *rnbytes);

message_pid

108

Syntax

Description
The message_pid function sends a message pointed to by smsg to the task
with process id task_id. Any reply is placed in the buffer rmsg. The size of the
sent message will be snbytes while the size of the reply will be truncated to a
maximum of rnbytes.

If time equals zero then the calling process will wait indefinitely for a reply. If
time is greater than zero then the process will wait time seconds before
returning.

The number of bytes send will be the minimum of that specified by the sender
and receiver.

Returns
Returns zero (0) on success. If an error occurs then (-1) is returned and raderr
is set.

Errors
When an error occurs, raderr contains a value indicating the type of error that
occurred.

RADERR_SIGNAL_FAIL the time out signal could not be claimed.
The signal SIGUSR1 is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL a timer could not be created. A timer is set
to trigger a signal after the required time-
out period.

RADERR_MSG_FAIL the message was interrupted.
RADERR_TME_OUT the message timed out.

#include “message.h”
int message_pid(pid_t task_id,

double time,
void *smsg,
void *rmsg,
unsigned snbytes,
unsigned rnbytes);

message_pid_array

109

Syntax

Description
The message_array function sends an array of messages pointed to by the
array smsg to the task with process id task_id. Any replies are placed in the
buffers pointed to by the array rmsg. The size of each sent message will be
taken from the corresponding entry in the array snbytes while the size of the
reply will be truncated to a maximum of the corresponding entry in the array
rnbytes.

If time equals zero then the calling process will wait indefinitely for a reply. If
time is greater than zero then the process will wait time seconds before
returning.

The number of bytes send will be the minimum of that specified by the sender
and receiver.

The function scans the arrays smsg and rmsg, which must be NULL terminated
to determine how many buffers to send and receive.

Returns
Returns zero (0) on success. If an error occurs then (-1) is returned and raderr
is set.

Errors
When an error occurs, raderr contains a value indicating the type of error that
occurred.

RADERR_SIGNAL_FAIL the time out signal could not be claimed.
The signal SIGUSR1 is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL a timer could not be created. A timer is set
to trigger a signal after the required time-
out period.

RADERR_NO_MEM memory could not be allocated to store the
messages.

RADERR_MSG_FAIL the message was interrupted.
RADERR_TME_OUT The message timed out.

#include “message.h”
int message_pid_array(

pid_t task_id,
double time,
void **smsg,
void **rmsg,
unsigned *snbytes,
unsigned *rnbytes);

task_id

110

Syntax

Description

The task_id function returns the process id (pid) of the task registered
under the name task.

Returns
Returns the process id on success. If the task cannot be found then (-1) is
returned and raderr is set.

Errors
When an error occurs, raderr contains a value indicating the type of error that
occurred.

RADERR_NO_TASK no task is registered with that name.

#include “message.h”
pid_t task_id(char *task);

111

option.o

process_file

112

Syntax

Description
The process_file function reads option switched from the file pointed to
by fp. The file should contain space separated command options.

A command line options consists of a list of option switches, strings that start
with the character “- ”. Each switch has an optional argument following it
witch can be either an integer, floating point number, or another string:

-beam 8 -debug -freq 12.34 -filename test.dat

The structure option contains the following members:

char *optname; the option switch to identify.
char type; the type of the argument following

option.
int set; a flag set when the option is located.
void *ptr; the address to store the argument.

Option switches are read from the file and checked against the array opt. If a
match is found with an optname member of one of the structures in opt,The
corresponding set member is set to 1 to indicate the option was found.

If the type character is one of the recognized types, the next string in the
command line is assumed to be an argument for the option switch.

There are five types:

‘s’ short int.
‘l’ long int.
‘f’ float.
‘d’ double.
‘t’ string.

If the argument is one of the numeric types it is converted from the argv string
and stored at the location pointer to by the ptr member. If the argument is a
string, then ptr is set to point to the appropriate element of argv.

If type is not one of the recognized types, the option switch is assumed to take
no arguments.

If an unrecognized option string is found it is passed to the function pointed to
by opterr. This function should report the error to the user and take the
appropriate action.

#include “option.h”
void process_file(

FILE *fp,
struct option *opt,
void(*opterr)(char *));

process_file

113

Returns
None.

process_option

114

Syntax

Description
The process_option function processes the command line arguments
according to the option table pointed to by opt.

The argument argv is an array of strings extracted from the command line, the
first string is the program name and subsequent strings are the space separated
options. The number of strings contained in the array is defined by argc.

A command line options consists of a list of option switches, strings that start
with the character “- ”. Each switch has an optional argument following it
which can be either an integer, floating point number, or another string:

-beam 8 -debug -freq 12.34 -filename test.dat

 If the final string on the command line is not part of an option switch it is
treated at a filename of a file containing more option switches.

The structure option contains the following members:

char *optname; the option switch to identify.
char type; the type of the argument following

option.
int set; a flag set when the option is located.
void *ptr; the address to store the argument.

The array argv is scanned for option switches which are checked against the
array opt. If a match is found with the optname member of one of the structures
in opt, The corresponding set member is set to 1 to indicate the option was
found.

If the type character is one of the recognized types, the next string in the
command line is assumed to be an argument for the option switch.

There are five types:

s short int.
l long int.
f float.
d double.
t string.

#include “option.h”
int process_option(

int argc,
char *argv[],
struct option *opt,
void(*opterr)(char *));

process_option

115

If the argument is one of the numeric types it is converted from the argv string
and stored at the location pointer to by the ptr member. If the argument is a
string, then ptr is set to point to the appropriate element of argv.

If type is not one of the recognized types, the option switch is assumed to take
no arguments.

If an unrecognized option string is found it is passed to the function pointed to
by opterr. This function should report the error to the user and take the
appropriate action.

Returns
Returns the index of argv after the last successfully processed option switch. If
the last string on the command line is a filename, this will be one (1) less than
argc.

116

read_clock.o

read_clock

117

Syntax

Description
The read_clock function reads the system clock. The system clock is
automatically calibrated against the GPS clock by the driver gps_clock .

Returns
The current time, accurate to the nearest second is returned in the variables
pointed to by year, mon, day, hour, minute, second. At present, the values of
msec and usec are set to zero.

#include “read_clock.h”
void read_clock(int *year,

int *mon,
int *day,
int *hour,
int *minute,
int *second,
int *msec,
int *usec);

118

read_fit.o

read_fit

119

Syntax

Description
The read_fit function reads a block of fitted data from the file pointed to by
fp into the structure pointed to by fit_data.

Returns
Returns zero (0) on success, or (-1) if an error occurred.

#include “read_fit.h”
int read_fit(

FILE *fp,
struct fitdata *fit_data);

120

read_raw.o

read_raw

121

Syntax

Description
The read_raw function reads a raw ACF record from the file pointed to by fp
into the structure pointed to by raw_data.

Returns
Returns zero (0) on success, or (-1) if an error occurred.

#include “read_raw.h”
int read_raw(

FILE *fp,
struct rawdata *raw_data);

read_raw_data

122

Syntax

Description
The read_raw_data function reads a raw ACF record from the file pointed
to by fp into the structure pointed to by raw_data.

Only the raw ACFs are read from the file and the Radar parameter block
remains unaffected.

Returns
Returns zero (0) on success, or (-1) if an error occurred.

#include “read_raw.h”
int read_raw_data(

FILE *fp,
struct rawdata *raw_data);

123

sample.o

add_data

124

Syntax

Description
The add_data function is used to create a table that can be used to sample the
data produced by fitacf across a scan. The table contains a list of range-beam
coordinates and a list of parameters to record.

Each time the transform_data function is called with a block of fitted data,
the table is inspected and a record is made of the data for the appropriate
ranges and parameters.

To construct a table, multiple calls are made to add_data with the sampling
coordinates specified by beam and range, and the parameter to record with
param_code, which can be one of :

PARAM_qflg quality flag.
PARAM_gsct ground scatter flag.
PARAM_p_0 lag 0 power.
PARAM_p_s sigma power.
PARAM_p_l lambda power.
PARAM_w_l lambda width.
PARAM_w_s sigma width.
PARAM_v velocity.
PARAM_v_err velocity error.
PARAM_sdev_l standard deviation of lambda fit.
PARAM_sdev_s standard deviation of sigma fit.
PARAM_sdev_phi standard deviation of phase fit.

The structure beam_list is a linked list of all the beams to sample across a
scan. It has the following members:

short int beam_no; beam number to sample.
short int range_max; maximum range for this beam.
struct range_list *table; pointer to a table of ranges.
struct beam_list *next; pointer to the next entry in the linked

list, NULL terminated.

The structure range_list is a linked list of all the ranges to sample within
a beam. It has the following members:

short int range; the range gate to sample.
long int distance; the range in kilometers.
struct param_list *table; pointer to a table of parameters.
struct range_list *next; pointer to the next entry in the linked

list, NULL terminated.

#include “sample.h”
int add_data(struct beam_list **table,

int beam,
int range,
enum param_code);

add_data

125

The structure param_list is a list of the parameters to sample at a particular
range. It has the following members:

enum param_code code; the parameter to sample.
int total; total number of times a sample has been

taken.
struct time_list *table; pointer to a list of samples.
struct param_list *next; pointer to the next entry in the linked

list, NULL terminated.

The structure time_list is a list of samples. It has the following members:

union {

 double value; a floating point parameter.
 int flag; a boolean flag.
} data; union to store the sampled parameter.
struct time_list *next; pointer to the next entry in the linked

list, NULL terminated.

Each member of the time_list linked list is a sample from one scan. The
list is arranged in time order with the first entry being from the most recent
scan. The length of the list, and consequently how many scans are stored, is
dependent on the number of times add_data is called with that particular
combination of beam, range and parameter.

Returns
Returns zero (0) on success, or (-1) if an error occurs.

remove_table

126

Syntax

Description
The remove_table function frees the memory uses by the sampling table
pointed to be table.

Returns
None.

#include “sample.h”
void remove_table(

struct beam_list **table);

transform_data

127

Syntax

Description
The transform_data function extracts the appropriate parameters from the
fitted data structure pointed to by fit_data and insert them into the sampling
table pointed to by table.

Returns
Returns zero (0) on success, or (-1) if the record cannot be processed occurs.

#include “sample.h”
int transform_data(

struct fitdata *fit_data,
struct beam_list **table);

128

task_write.o

task_close

129

Syntax

Description
The task_close function sends a message to the program registered under
the name task, requesting that any open files are closed.

The task will close the files when it receives data with a time stamp later than
the date and time specified by year, month, day, hour, minute and second.

Returns
Returns zero (0) on success, or if an error occurs (-1) is returned and raderr is
set.

Errors
When an error occurs, raderr contains a value indicating the type of error that
occurred.

RADERR_NO_TASK no task is registered with that name.
RADERR_SIGNAL_FAIL the time out signal could not be claimed.

The signal SIGUSR1 is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL a timer could not be created. A timer is set
to trigger a signal after the required time-
out period.

RADERR_MSG_FAIL the message was interrupted.
RADERR_TME_OUT the message timed out.
RADERR_TASK_FAIL the task failed to complete this command.

#include “task_write.h”
int task_close(char *task,

short int year,
short int month,
short int day,
short int hour,
short int minute,
short int second);

task_open

130

Syntax

Description
The task_open function sends a message to the program registered under
the name task, requesting that files should be opened.

The task will open the files when it receives data with a time stamp later than
the date and time specified by year, month, day, hour, minute and second.

Returns
Returns zero (0) on success, or if an error occurs (-1) is returned and raderr is
set.

Errors
When an error occurs, raderr contains a value indicating the type of error that
occurred.

RADERR_NO_TASK no task is registered with that name.
RADERR_SIGNAL_FAIL the time out signal could not be claimed.

The signal SIGUSR1 is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL a timer could not be created. A timer is set
to trigger a signal after the required time-
out period.

RADERR_MSG_FAIL the message was interrupted.
RADERR_TME_OUT the message timed out.
RADERR_TASK_FAIL the task failed to complete this command.

#include “task_write.h”
int task_open(char *task,

short int year,
short int month,
short int day,
short int hour,
short int minute,
short int second);

task_quit

131

Syntax

Description
The task_quit function sends a message to the program registered under the
name task, requesting it to shut down and exit.

Returns
Returns zero (0) on success, or if an error occurs (-1) is returned and raderr is
set.

Errors
When an error occurs, raderr contains a value indicating the type of error that
occurred.

RADERR_NO_TASK no task is registered with that name.
RADERR_SIGNAL_FAIL the time out signal could not be claimed.

The signal SIGUSR1 is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL a timer could not be created. A timer is set
to trigger a signal after the required time-
out period.

RADERR_MSG_FAIL the message was interrupted.
RADERR_TME_OUT the message timed out.
RADERR_TASK_FAIL the task failed to complete this command.

#include “task_write.h”
int task_quit(char *task);

task_write_aux

132

Syntax

Description
The task_write_aux function sends a message to the program registered
under the name task, containing a block of auxiliary data, pointed to by block,
of length size bytes.

The contents of the block of data depends on the receiving task. It is used to
pass parameters and data that are note part of either the rawdata or
fitdata structures to those tasks that require it.

Returns
Returns zero (0) on success, or if an error occurs (-1) is returned and raderr is
set.

Errors
When an error occurs, raderr contains a value indicating the type of error that
occurred.

RADERR_NO_TASK no task is registered with that name.
RADERR_SIGNAL_FAIL the time out signal could not be claimed.

The signal SIGUSR1 is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL a timer could not be created. A timer is set
to trigger a signal after the required time-
out period.

RADERR_MSG_FAIL the message was interrupted.
RADERR_TME_OUT the message timed out.
RADERR_TASK_FAIL the task failed to complete this command.

#include “task_write.h”
int task_write_aux(

char *task,
void *block,
int length);

task_write_fit

133

Syntax

Description
The task_write_fit function sends a message to the program registered
under the name task, containing the fitted data pointed to by fit_data.

If flag is set to one (1) then the data will be stored in a file, otherwise it will be
processed but not recorded.

Returns
Returns zero (0) on success, or if an error occurs (-1) is returned and raderr is
set.

Errors
When an error occurs, raderr contains a value indicating the type of error that
occurred.

RADERR_NO_TASK no task is registered with that name.
RADERR_SIGNAL_FAIL the time out signal could not be claimed.

The signal SIGUSR1 is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL a timer could not be created. A timer is set
to trigger a signal after the required time-
out period.

RADERR_MSG_FAIL the message was interrupted.
RADERR_TME_OUT the message timed out.
RADERR_TASK_FAIL the task failed to complete this command.

#include “task_write.h”
int task_write_fit(

char *task,
struct fitdata *fit_data,
short int flag);

task_write_raw

134

Syntax

Description
The task_write_raw function sends a message to the program registered
under the name task, containing the raw ACF data pointed to by raw_data.

If flag is set to one (1) then the data will be stored in a file, otherwise it will be
processed but not recorded.

Returns
Returns zero (0) on success, or if an error occurs (-1) is returned and raderr is
set.

Errors
When an error occurs, raderr contains a value indicating the type of error that
occurred.

RADERR_NO_TASK no task is registered with that name.
RADERR_SIGNAL_FAIL the time out signal could not be claimed.

The signal SIGUSR1 is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL a timer could not be created. A timer is set
to trigger a signal after the required time-
out period.

RADERR_MSG_FAIL the message was interrupted.
RADERR_TME_OUT the message timed out.
RADERR_TASK_FAIL the task failed to complete this command.

#include “task_write.h”
int task_write_raw(

char *task,
struct rawdata *raw_data,
short int flag);

135

user_int.o

scheduled

136

Syntax

Description
The scheduled function tests whether the control program was started by the
scheduler.

Returns
Returns one (1) if the program was started by the scheduler, or zero (0)
otherwise.

#include “user_int.h”
int scheduled(void);

register_program

137

Syntax

Description
The register_program attempts to register the control program with the
operating system under the name control_name. It also attempts to locate the
scheduler registered under the name schedule_name.

If schedule_name or control_name is NULL the appropriate default names of
“ /schedule ”, and “/control_program ” will be used.

Returns
Returns one (1) if successful, or (-1) if an error occurred.

#include “user_int.h”
int register_program(

char *schedule_name,
char *control_name);

user_int

138

Syntax

Description
The user_int function checks to see if the task alter is running and wishes
to change the radar parameters stored in the structure pointed to by raw_data.

An extra set of user defined parameters can also be sent to the task using the
variables string and the optional arguments.

Within alter commands can be entered at the shell shown by the “>” prompt.

The shell supports four commands :

The shell supports three commands :

go
Typing “go” will send the altered parameters back to the control program so
that they will take affect at the start of the next integration period.

show [variable_name..]
Typing “show” will list the values of the specified variables. If no variable
names are listed then the entire set will be shown

<variable> = < value>
A new value is assigned to a variable by using the “=” sign:

There should be no spaces between the value, the “=” sign, or the variable
name.

The radar parameters that can be altered are :

#include “user_int.h”
int user_int(

struct rawdata *raw_data,
char *variables,
…);

go
show
<variable> = < value>

bmnum=12
combf=Hello world

user_int

139

The string variables is an identifier used to classify the optional argument list
that follows it. The string consists of a set of space separated labels and codes to
identify the name and type of the pointers that make up the variable argument
list.

Four codes are recognized :

i short int.
l long int.
f float.
d double.
s string.

Each label is followed by a type code :

"a_short_integer i a_string s a_float f"

Would specify that the three pointers following the variables string were of
types : short int *, char *, and float *. They would be given the labels :
“a_short_integer ”, “ a_string ”, and “a_float ”.

Typing “show” in the shell of the alter task would list these three extra
variables as well as the radar parameters.

intt The integration period.
txpl The pulse length.
mpinc The lag separation in micro seconds.
mppul The number of pulses in a pulse pattern.
mplgs The number of lags in the lag table.
nrang The number of range gates.
frang The distance in kilometers to the first range gate.
rsep The range separation in kilometers.
bmnum The current beam number.
xcf The cross correlation flag.
tfreq The transmitted frequency.
scan The scan mode.
mxpwr The maximum power allowed.
lvmax The maximum noise level allowed.
cp The program id.
usr_resS1 User defined short variable 1.
usr_resS2 User defined short variable 2.
usr_resS3 User defined short variable 3.
usr_resL1 User defined long variable 1.
usr_resL2 User defined long variable 2.
combf The comment buffer.

user_int

140

The function user_int is also used to detect when the scheduler wishes to
terminate the control program. If the function returns one (1), the control
program should shut down as soon as possible.

Returns
Returns one (1) if the control program should shut down, or zero (0) otherwise.

141

The Task Library

142

add_point.o

add_point

143

Syntax

Description
The function add_point adds a point to a clipping table.

A clipping table is a list of plotting commands for drawing complex outlines.
Each entry in the table has an associated action, either plot or move. If the
action is to plot, a line is drawn from between the last point and the current
point.

 When a point is added to the table by the function add_point a check is
performed to ensure that the coordinates are within the boundaries of the
screen. If they are not the point is automatically converted to a move. If the
previous point was also off screen then it is replaced by the current point.

The coordinates of the point are defined by x and y. If op is set to zero then the
action to associate with the point is to plot a line, otherwise a move is
performed. The coordinate limits range from zero (0) to the width and height of
the screen as defined by wdt and hgt.

The clipping table is stored in the structure pointed to by a. The structure
parray has the following members:

long int nelem; the number of points in the table.
struct apnt *pnt; a pointer to an array containing the

points.

The structure apnt has the following members:

unsigned char op; the action to perform: 0=draw a line,
otherwise move.

short int x; the x coordinate.
short int y; the y coordinate.

Returns
Returns zero (0) if the point was successfully added to the table or (-1) if an
error occurred.

#include “util/add_point.h”
int add_point(struct parray *a,

unsigned char op,
int x,
int y,
int wdt,
int hgt);

144

cnv_time.o

get_time

145

Syntax

Description
The get_time function converts the time expressed as seconds passed the
start of the year into day, month, hour, minute, and second.

The variable time is the number of seconds that have elapsed since midnight on
the first of January in the year yr. The converted time, expressed as month, day,
hour minute and second, is stored in the variables pointed to by mo, dy, hr, mn,
and sc.

Returns
None.

#include “util/cnv_time.h”
void get_time(long int time,

int yr,
int *mo,
int *dy,
int *hr,
int *mn,
int *sc);

year_sec

146

Syntax

Description
The year_sec function converts the time expressed as year, month, day,
hour, minute, and second into the number of seconds that have elapsed from
the start of the year.

The time expressed as month, day, hour minute and second is defined by the
variables yr, mo, dy, hr, mn, and sec.

Returns
Returns the number of seconds that have elapsed since midnight on the first of
January.

#include “util/cnv_time.h”
long int year_sec(int yr,

int mo,
int dy,
int hr,
int mn,
int sec);

147

cnvt_coord.o

cubic

148

Syntax

Description
The function cubic converts a Radar range/beam coordinate pair into a
geographic location expressed in normalized Cartesian coordinates.

If variables bcrd and rcrd define the beam and range that the conversion is to
be performed on. If the flag center is not equal to zero the position is calculated
for the center of the range cell, otherwise the left hand lower edge of the cell is
used.

The location of the Radar is defined by the structure pointed to by rpos. In
addition, the calculation requires the lag to first range in milliseconds as
defined by lagfr, and the sample separation, also in milliseconds as defined by
smsep.

The variable height defines the height above in kilometers above the Radar at
which the position is to be calculated. However, if height is less than 90, it is
assumed to be an angle of elevation from the Radar site.

The converted position expressed as normalized Cartesian coordinates is stored
in the variables pointed to by x, y, and z. The coordinate system maps positions
on the Earth’s surface to a sphere of radius one (1).

Returns
None.

#include “geo/geo.h”
void cubic(int center,

int bcrd,
int rcrd,
struct rpos *pos,
int lagfr,
int smsep,
int height,
double *x,
double *y,
double *z);

geographic

149

Syntax

Description
The function geographic converts a Radar range/beam coordinate pair into
a geographic location expressed in longitude and latitude.

If variables bcrd and rcrd define the beam and range that the conversion is to
be performed on. If the flag center is not equal to zero the position is calculated
for the center of the range cell, otherwise the left hand lower edge of the cell is
used.

The location of the Radar is defined by the structure pointed to by rpos. In
addition, the calculation requires the lag to first range in milliseconds as
defined by lagfr, and the sample separation, also in milliseconds as defined by
smsep.

The variable height defines the height in kilometers above the Radar at which
the position is to be calculated. However, if height is less than 90, it is assumed
to be an angle of elevation from the Radar site.

The converted position expressed as distance from the center of the Earth and
latitude and longitude are stored in the variables pointed to be rho, lat, and lng.

Returns
None.

#include “geo/geo.h”
void geographic(int center,

int bcrd,
int rcrd,
struct rpos *pos,
int lagfr,
int smsep,
int height,
double *rho,
double *lat,
double *lng);

load_rpos

150

Syntax

Description
The function load_rpos loads a set of Radar positions from the file identified
by fname. The position of the Radar at year year, and yr_sec seconds within
that year are loaded.

The position file is a plain text file with each line containing a single entry for
a Radar at a specific time and date. If a line begins with the character “#” it is
treated as a comment and ignored.

Each line consists of a space separated list of data that defines the Radar
position. The data are:

Station ID the station identifier code.
Year date of the position.
Year Second seconds passed year of the position.
Latitude latitude of the center tower of the Radar.
Longitude longitude of the center tower of the

Radar.
Altitude altitude in kilometers of the Radar above

sea-level.
Bore Site line of sight of the radar.
Beam Separation angular separation of the beams in

degrees.
V direction
Attenuation
Interferometer Position
Receiver Rise Time rise time of the receiver in micro-

seconds.

Returns
Returns zero (0) on success, or (-1) otherwise.

#include “geo/geo.h”
int load_rpos(char *fname,

int year,
long int yr_sec);

radar_pos

151

Syntax

Description
The function radar_pos returns a pointer to a structure of the type rpos
containing the position of the Radar with station identifier station.

The structure rpos has the following members:

double gdlat; latitude of the center tower of the Radar.
double gdlon; longitude of the center tower of the

Radar.
double boresite; line of sight of the radar.
double bmwidth; angular separation of the beams in

degrees.
double rxris; rise time of the receiver in micro-

seconds.

Returns
Returns a pointer to a structure of type rpos containing the location of the
Radar, or NULL if an error occurred.

#include “geo/geo.h”
struct rpos *radar_pos(int station);

152

echo_util.o

echo_register

153

Syntax

Description
The function echo_register registers a task with echo_data so that it
will receive Radar data.

The function will attempt to connect with the version of echo_data
registered under the name echo_name. If this string is NULL, then the default
name of “/echo_data ” is used.

The string name is used by echo_data when it reports activities involving
the task.

The variable flag defines what kind of data will be forwarded to the task.
Different combinations of data can be forwarded by combining the flags using a
bitwise OR:

The flags are:

PASS_AUX pass auxiliary data.
PASS_FIT pass data from fitacf .
PASS_RAW pass the raw ACF data.

Returns
Returns zero (0) on success, or (-1) if an error occurs.

#include “echo/echo_util.h”
int echo_register(char *name,

char *echo_name,
char flag);

echostat=echo_register(“mytask”,
 NULL,
 PASS_RAW | PASS_FIT);

154

file_io.o

decode_msg

155

Syntax

Description
The decode_msg function decodes one of the standard data transfer messages
sent from a control program by the task_write library.

The function decodes the data component of a message given the header
character, msg, and the task id (tid) of the task that sent it, tid.

The following code demonstrates how to extract the header when a message is
received:

After the function has been called, the character pointed to by rmsg contains
the message to send in reply. The possible replies are:

TASK_OK the message was successfully decoded.
TASK_ERR an error occurred when decoding the

message.
UNKNOWN_MESSAGE the message could not be recognized.

If the message could not be recognized or an error occurred, the calling task
should reply to the message immediately and return:

#include “file_io.h”
unsigned char *decode_msg(int tid,char

msg,char *rmsg,int *flag);

 while (1) { /* start of loop */

 /* when a message is received extract
 the first byte */

 tid=Receive(0,&msg,sizeof(char));

 /* decode the message */

 data=decode_msg(tid,msg,&rmsg,&flag);

 /* process the data (if any) and reply to
 the message */

 /* process the data (if any) and reply to the
 message*/

 if ((rmsg==UNKNOWN_TYPE) ||
 (rmsg==TASK_ERR)) {
 Reply(reply_tid,&rmsg,sizeof(char));
 continue; /* skip to the end of the loop */
 }

 /* Process the data here */

decode_msg

156

If the message contains a block of data then the function will return a pointer to
it, otherwise NULL is returned.

After the message has been decoded the integer pointed to by flag contains a set
of Boolean flags that indicate the file operations to perform.

The flags are:

OPEN_BIT open a new file before processing the block
of data.

CLOSE_BIT if a file is open then close it before
processing this block of data.

WRITE_BIT if a file is open then write the processed
data to it..

The task_write controls file operations by sending a message containing
the time at which files should be opened and closed. The decode_msg
function records these times and compares them with the time-stamps
associated with the Radar data blocks. At the appropriate time the function sets
the flags in the flag variable.

The calling program should test for each flag and take the appropriate actions:

Returns
Returns a pointer to a block of data decoded from the message or NULL. The
message to send in reply is stored at rmsg, and the file operations to perform
are stored at flag.

if ((fp !=NULL) && (flag & CLOSE_BIT))
 fclose(fp) /* close the file */

if (flag & OPEN_BIT)
 fp=fopen(fname,”w”); /* open a new file */

/* process data */

if ((flag & WRITE_BIT) && (fp !=NULL))
 /* write record */

open_file

157

Syntax

Description
The open_file function attempts to create an empty file with a unique
filename according to the SuperDARN naming convention of :

yymmddhhs[x].eee

Where:

The string pathenv specifies the pathname of the directory to store the file in
and the string ext contains the extension or file-type to apply.

The date to associate with the file is taken from the radar parameter block
pointed to by prm.

If the parameter mode is set to zero (0), the file mode bits will be overwritten so
that the file can be read and written by all.

The character pointer suffix is used to store the suffix character that must
sometimes be applied to the filename to ensure a unique name.

The flag parameter controls the operation of the function, it has the possible
values of:

Returns
Returns the full pathname of the file created or NULL if an error occurred.

#include “file_io.h”
char *open_file(char *pathenv,struct

radops_parms *prm,char *ext,int
mode,char *sfx,int flag);

yy year XXyy.
mm month.
dd day.
hh hour.
s station identifier letter.
x optional suffix to preserve unique filenames (A-Z,a-z).
eee file extension. e.g. FIT,DAT.

0 check for the existence of a file with this filename. If it
already exists step through the possible suffixes until a
unique name is found.

1 force the use of the supplied suffix and if the file
already exists overwrite it with an empty file.

2 force the use of the supplied suffix, and if the file
already exists leave it intact.

158

filer.o

filer

159

Syntax

Description
The filer function draws and maintains a file selection window on the
terminal. The string title is printed above the window. The initial directory
displayed in the window is specified by dir_name, the initial file selected is
defined by file_name. The final complete path name of the file is stored in the
string path when the function returns.

The file selection window is split into two, the top half of the window shows the
full path name of the selected file. The bottom half of the window shows the
contents of the directory that the file is in.

Files can be selected by pressing the up and down arrow keys to scroll through
the contents of the directory, or by clicking on a file with the mouse. The name
of the file can be changed by typing a new name in the top half of the window.

A different directory can be selected by typing its name in the top half of the
window and pressing return.

You must call the term_load function before attempting to call this function.

Returns
Returns the key code that caused the filer to terminate, either “<enter>” or
“<escape>”. The string path will contain the complete pathname of the selected
file.

#include “filer/filer.h”
int filer(char *title,

char *path,
char *dir_name,
char *file_name);

leaf_name

160

Syntax

Description
The leaf_name function extracts the leaf name of a complete file path.

“ /radops/src/task_lib/filer.c ” would be truncated to
“ filer.c ”.

Returns
Returns a pointer to the extracted leaf name.

#include “filer/filer.h”
char *leaf_name(char *path);

161

gbuf_util.o

get_display

162

Syntax

Description
The get_display function attempts to claim one of the frame buffers used
by the gbuf driver.

The driver maintains a set of frame buffers in shared memory. Each buffer is
identified by a filename under the “/dev/shmem ” directory. The filenames
are of the form “Display.con x”, where x is the console number for the
display.

When the function is called it will attempt to access the frame buffer identified
by fname. If successful a pointer to a structure containing information about the
display is returned in hdr, and the pointer to the actual frame buffer is returned
in g.

The structure image_header has the following members:

long int size; the total size of the shared memory
buffer, including this header.

pid_t pid; the process ID of the gbuf driver that
created the buffer.

short int pflag; the palette flag. If pflag is not equal to
zero then the palette registers will be set
whenever the console becomes active.

long int pal_reg[256]; the contents of the palette registers for
this display.

short int numxpixels; the width of the display in pixels.
short int numypixels; the height of the display in pixels.
short int bp; the number of bits per pixel for the

display.

Returns
Returns zero (0) on success and sets the pointer hdr and g. If an error occurs (-
1) is returned.

#include “gbuf/gbuf_util.h”
int get_display(char *fname,struct gbuf

**g,struct image_header **hdr);

refresh_display

163

Syntax

Description
The function refresh_display signals the gbuf driver that the display
identified by hdr should be redisplayed on the console.

The gbuf program maintains a frame buffer on which all graphics operations
are performed. However, operations are only reflected on the console screen
when it first becomes active and after the refresh_display function is
called.

Returns
Returns zero (0) on success, or (-1) if the refresh failed.

#include “gbuf/gbuf_util.h”
int refresh_display(struct image_header

*hdr);

164

graph_lib.o

bgcolor

165

Syntax

Description
The function bgcolor sets the current background colour to c.

Returns
None.

 #include “graph_lib.h”
void bgcolor(int c);

clg

166

Syntax

Description
The function clg clears the contents of the currently active graphics buffer to
the background colour.

Returns
None.

 #include “graph_lib.h”
void clg();

cnv_to_ppm

167

Syntax

Description
The function cnv_to_ppm converts the current graphics buffer inta a Portable
PixMap (PPM) image which is written to the open file pointed to by fp.

The PPM format is recognized by a large number of graphics packages.

Returns
Returns zero (0) on success, or (-1) if an error occurred.

 #include “graph_lib.h”
int cnv_to_ppm(FILE *fp);

color

168

Syntax

Description
The function color sets the current foreground colour to c.

Returns
None.

 #include “graph_lib.h”
void color(int c);

copy_gbuf

169

Syntax

Description
The copy_gbuf function copies the contents of the graphics buffer pointed to
by gb to the one pointed to by ga. The buffers must be of the same size.

Returns
Returns zero (0) on success, or (-1) if an error occurred.

 #include “graph_lib.h”
int copy_gbuf(struct gbuf *ga,

struct gbug *gb);

copy_pixel

170

Syntax

Description
The copy_pixel function copies a single pixel from the graphics buffer
pointed to by gb to the one pointed to by ga. The buffers must be of the same
size.

The pixel is taken from the location specified by x and y.

Returns
None.

 #include “graph_lib.h”
void copy_pixel(struct gbuf *ga,

struct gbuf *gb,
int x,
int y);

copy_polygon

171

Syntax

Description
The copy_polygon function copies a polygon from the graphics buffer
pointed to by gb to the one pointed to by ga. The buffers must be of the same
size.

The arrays x and y define the vertices of the polygon. The number of elements
in each array must be equal to num which is the number of vertices in the
polygon.

Returns
None.

 #include “graph_lib.h”
void copy_polygon(struct gbuf *ga,

struct gbuf *gb,
int num,
int *x,
int *y);

draw

172

Syntax

Description
The function draw plots a line from the current graphics cursor to the position
specified by x and y. The current graphics cursor is set to the end of the line as
defined by x and y.

Returns
None.

 #include “graph_lib.h”
void draw(int x,int y);

draw_ellipse

173

Syntax

Description
The draw_ellipse function draws an ellipse.

 The center of the ellipse is defined by x and y, and the x and y radii are defined
by w and h. If fill is equal to zero (0) then only the outline of the ellipse is
drawn, otherwise it is filled.

Returns
None.

 #include “graph_lib.h”
void draw_ellipse(int fill,

int x,
int y,
int w,
int h);

draw_polygon

174

Syntax

Description
The draw_polygon function plots a filled polygon.

The arrays x and y define the vertices of the polygon. The number of elements
in each array must be equal to num which is the number of vertices in the
polygon.

The current graphics cursor is set to the coordinate of the first vertex of the
polygon.

Returns
None.

 #include “graph_lib.h”
void draw_polygon(int num,

int *x,
int *y);

draw_rectangle

175

Syntax

Description
The function draw_rectangle draws a rectangle with bottom left
coordinate defined by x and y, and with width and height defined by w, and h.

If fill is equal to zero (0) then only the outline of the ellipse is drawn, otherwise
it is filled.

Returns
None.

 #include “graph_lib.h”
void draw_rectangle(int fill,

int x,
int y,
int w,
int h);

draw_text

176

Syntax

Description
The function draw_text plots the text string text at the current graphics
cursor.

Returns
None.

 #include “graph_lib.h”
void draw_text(char *text);

free_gbuf

177

Syntax

Description
The function free_gbuf releases the memory claimed for the graphics buffer
pointed to by gf.

Returns
None.

 #include “graph_lib.h”
void free_gbuf(struct gbuf *gf);

make_gbuf

178

Syntax

Description
The make_gbuf function reserves memory for a graphics buffer. The buffer is
the same format as that used by the gbuf driver and can be used as a frame
store.

The size of the buffer is defined by wdt and hgt.

The parameter pal_reg points to an array of palette registers that will be used
when displaying the image or when it is saved in a graphics file. The two
dimensional array has 256x3 elements:

pal_reg[n][0]; red component.
pal_reg[n][1]; green component.
pal_reg[n][2]; blue component.

The function returns a pointer to a structure of the type gbuf which has the
following members:

int wdt; width of the buffer in pixels.
int hgt; height of the buffer in pixels.
int x; the X coordinate of the graphics cursor.
int y; the Y coordinate of the graphics cursor.
char c; the foreground colour palette index.
char bc; the background colour palette index.
char pal_reg[256][3]; the palette registers.
char *buf; the memory to store the image in.

Returns
Returns a pointer to the graphics buffer created, or if an error occurred NULL is
returned.

 #include “graph_lib.h”
struct gbuf *make_gbuf(int wdt,int

hgt,unsigned char *pal_reg);

move

179

Syntax

Description
The function move sets the current graphics cursor to the position specified by
x and y.

Returns
None.

 #include “graph_lib.h”
void move(int x,

int y);

set_gbuf

180

Syntax

Description
The function set_gbuf sets the active graphics area to the buffer pointed to
by gf. All subsequent graphics operations will be performed on this buffer.

Returns
None.

 #include “graph_lib.h”
void set_gbuf(struct gbuf *gf);

write_pixel

181

Syntax

Description
The function write_pixel plots a single pixel at the position specified by x
and y in the current foreground colour.

Returns
None.

 #include “graph_lib.h”
void write_pixel(int x,

int y);

182

log_error.o

log_error

183

Syntax

Description
The log_error function sends a message to the errlog task identified by
errlog, containing the error message string pointed to by buffer. If name is not
NULL the error log will include the string together with the error message.

If errlog is NULL the default name of “/errlog ” will be used.

Returns
Returns zero (0) on success, or (-1) if an error occurred.

#include “log_error.h”
int log_error(char *errlog,

char *name,
char *buffer);

184

message.o

message

185

Syntax

Description
The message function sends a message pointed to by smsg to the task
registered under the name task. Any reply is placed in the buffer rmsg. The size
of the sent message will be snbytes while the size of the reply will be truncated
to a maximum of rnbytes.

If time equals zero then the calling process will wait indefinitely for a reply. If
time is greater than zero then the process will wait time seconds before
returning.

The number of bytes send will be the minimum of that specified by the sender
and receiver.

Returns
Returns zero (0) on success. If an error occurs then (-1) is returned and msgerr
is set.

Errors
When an error occurs, msgerr contains a value indicating the type of error that
occurred.

MSGERR_NO_TASK no task is registered with that name.
MSGERR_SIGNAL_FAIL the time out signal could not be claimed.

The signal SIGUSR1 is generated after a
time-out to interrupt the message.

MSGERR_TIMER_FAIL a timer could not be created. A timer is set
to trigger a signal after the required time-
out period.

MSGERR_MSG_FAIL the message was interrupted.
MSGERR_TME_OUT the message timed out.

#include “message.h”
int message(char *task,

double time,
void *smsg,
void *rmsg,
unsigned snbytes,
unsigned rnbytes);

message_array

186

Syntax

Description
The message_array function sends an array of messages pointed to by the
array smsg to the task registered under the name task. Any replies are placed in
the buffers pointed to by the array rmsg. The size of each sent message will be
taken from the corresponding entry in the array snbytes while the size of the
reply will be truncated to a maximum of the corresponding entry in the array
rnbytes.

If time equals zero then the calling process will wait indefinitely for a reply. If
time is greater than zero then the process will wait time seconds before
returning.

The number of bytes send will be the minimum of that specified by the sender
and receiver.

The function scans the arrays smsg and rmsg, which must be NULL terminated
to determine how many buffers to send and receive.

Returns
Returns zero (0) on success. If an error occurs then (-1) is returned and msgerr
is set.

Errors
When an error occurs, msgerr contains a value indicating the type of error that
occurred.

MSGERR_NO_TASK no task is registered with that name.
MSGERR_SIGNAL_FAIL the time out signal could not be claimed.

The signal SIGUSR1 is generated after a
time-out to interrupt the message.

MSGERR_NO_MEM memory could not be allocated to store the
messages.

MSGERR_TIMER_FAIL a timer could not be created. A timer is set
to trigger a signal after the required time-
out period.

MSGERR_MSG_FAIL the message was interrupted.
MSGERR_TME_OUT The message timed out.

#include “message.h”
int message_array(char *task,

double time,
void **smsg,
void **rmsg,
unsigned *snbytes,
unsigned *rnbytes);

message_pid

187

Syntax

Description
The message_pid function sends a message pointed to by smsg to the task
with process id task_id. Any reply is placed in the buffer rmsg. The size of the
sent message will be snbytes while the size of the reply will be truncated to a
maximum of rnbytes.

If time equals zero then the calling process will wait indefinitely for a reply. If
time is greater than zero then the process will wait time seconds before
returning.

The number of bytes send will be the minimum of that specified by the sender
and receiver.

Returns
Returns zero (0) on success. If an error occurs then (-1) is returned and msgerr
is set.

Errors
When an error occurs, msgerr contains a value indicating the type of error that
occurred.

MSGERR_SIGNAL_FAIL the time out signal could not be claimed.
The signal SIGUSR1 is generated after a
time-out to interrupt the message.

MSGERR_TIMER_FAIL a timer could not be created. A timer is set
to trigger a signal after the required time-
out period.

MSGERR_MSG_FAIL the message was interrupted.
MSGERR_TME_OUT the message timed out.

#include “message.h”
int message_pid(pid_t task_id,

double time,
void *smsg,
void *rmsg,
unsigned snbytes,
unsigned rnbytes);

message_pid_array

188

Syntax

Description
The message_array function sends an array of messages pointed to by the
array smsg to the task with process id task_id. Any replies are placed in the
buffers pointed to by the array rmsg. The size of each sent message will be
taken from the corresponding entry in the array snbytes while the size of the
reply will be truncated to a maximum of the corresponding entry in the array
rnbytes.

If time equals zero then the calling process will wait indefinitely for a reply. If
time is greater than zero then the process will wait time seconds before
returning.

The number of bytes send will be the minimum of that specified by the sender
and receiver.

The function scans the arrays smsg and rmsg, which must be NULL terminated
to determine how many buffers to send and receive.

Returns
Returns zero (0) on success. If an error occurs then (-1) is returned and msgerr
is set.

Errors
When an error occurs, msgerr contains a value indicating the type of error that
occurred.

MSGERR_SIGNAL_FAIL the time out signal could not be claimed.
The signal SIGUSR1 is generated after a
time-out to interrupt the message.

MSGERR_TIMER_FAIL a timer could not be created. A timer is set
to trigger a signal after the required time-
out period.

MSGERR_NO_MEM memory could not be allocated to store the
messages.

MSGERR_MSG_FAIL the message was interrupted.
MSGERR_TME_OUT The message timed out.

#include “message.h”
int message_pid_array(

pid_t task_id,
double time,
void **smsg,
void **rmsg,
unsigned *snbytes,
unsigned *rnbytes);

task_id

189

Syntax

Description

The task_id function returns the process id (pid) of the task registered
under the name task.

Returns
Returns the process id on success. If the task cannot be found then (-1) is
returned and msgerr is set.

Errors
When an error occurs, msgerr contains a value indicating the type of error that
occurred.

MSGERR_NO_TASK no task is registered with that name.

#include “message.h”
pid_t task_id(char *task);

190

radar_name.o

radar_code

191

Syntax

Description
The radar_code function returns the identifying letter of the station with
the identifier code station_id.

Returns
Returns a character containing the identifier letter of the Radar station or the
string “x” if the station is unknown

#include “util/radar_name.h”
char *radar_code(int station_id);

radar_name

192

Syntax

Description
The radar_name function returns the name of the station with the identifier
code station_id.

Returns
Returns a text string containing the name of the Radar station or the string
“Unknown” if the station is unknown.

#include “util/radar_name.h”
char *radar_name(int station_id);

193

read_clock.o

read_clock

194

Syntax

Description
The read_clock function reads the system clock. The system clock is
automatically calibrated against the GPS clock by the driver gps_clock .

Returns
The current time, accurate to the nearest second is returned in the variables
pointed to by year, mon, day, hour, minute, second. At present, the values of
msec and usec are set to zero.

#include “read_clock.h”
void read_clock(int *year,

int *mon,
int *day,
int *hour,
int *minute,
int *second,
int *msec,
int *usec);

195

read_data.o

read_double

196

Syntax

Description
The read_double function reads an number of type double from the file
pointed to by fp. The result is stored at the address pointed to by val.

Returns
Returns zero (0) on success, or (-1) if an error occurred.

#include “util/read_data.h”
int read_double(FILE *fp, double *val);

read_float

197

Syntax

Description
The read_float function reads an number of type float from the file
pointed to by fp. The result is stored at the address pointed to by val.

Returns
Returns zero (0) on success, or (-1) if an error occurred.

#include “util/read_data.h”
int read_float(FILE *fp, float *val);

read_long

198

Syntax

Description
The read_long function reads an number of type long from the file
pointed to by fp. The result is stored at the address pointed to by val.

Returns
Returns zero (0) on success, or (-1) if an error occurred.

#include “util/read_data.h”
int read_long(FILE *fp,

long int *val);

read_short

199

Syntax

Description
The read_short function reads an number of type short from the file
pointed to by fp. The result is stored at the address pointed to by val.

Returns
Returns zero (0) on success, or (-1) if an error occurred.

#include “util/read_data.h”
int read_short(FILE *fp,

short int *val);

200

read_fit.o

read_fit

201

Syntax

Description
The read_fit function reads a block of fitted data from the file pointed to by
fp into the structure pointed to by fit_data.

Returns
Returns zero (0) on success, or (-1) if an error occurred.

#include “read_fit.h”
int read_fit(

FILE *fp,
struct fitdata *fit_data);

202

read_raw.o

read_raw

203

Syntax

Description
The read_raw function reads a raw ACF record from the file pointed to by fp
into the structure pointed to by raw_data.

Returns
Returns zero (0) on success, or (-1) if an error occurred.

#include “read_raw.h”
int read_raw(

FILE *fp,
struct rawdata *raw_data);

read_raw_data

204

Syntax

Description
The read_raw_data function reads a raw ACF record from the file pointed
to by fp into the structure pointed to by raw_data.

Only the raw ACFs are read from the file and the Radar parameter block
remains unaffected.

Returns
Returns zero (0) on success, or (-1) if an error occured.

#include “read_raw.h”
int read_raw_data(

FILE *fp,
struct rawdata *raw_data);

205

sample.o

add_data

206

Syntax

Description
The add_data function is used to create a table that can be used to sample the
data produced by fitacf across a scan. The table contains a list of range-beam
coordinates and a list of parameters to record.

Each time the transform_data function is called with a block of fitted data,
the table is inspected and a record is made of the data for the appropriate
ranges and parameters.

To construct a table, multiple calls are made to add_data with the sampling
coordinates specified by beam and range, and the parameter to record with
param_code, which can be one of :

PARAM_qflg quality flag.
PARAM_gsct ground scatter flag.
PARAM_p_0 lag 0 power.
PARAM_p_s sigma power.
PARAM_p_l lambda power.
PARAM_w_l lambda width.
PARAM_w_s sigma width.
PARAM_v velocity.
PARAM_v_err velocity error.
PARAM_sdev_l standard deviation of lambda fit.
PARAM_sdev_s standard deviation of sigma fit.
PARAM_sdev_phi standard deviation of phase fit.

The structure beam_list is a linked list of all the beams to sample across a
scan. It has the following members:

short int beam_no; beam number to sample.
short int range_max; maximum range for this beam.
struct range_list *table; pointer to a table of ranges.
struct beam_list *next; pointer to the next entry in the linked

list, NULL terminated.

The structure range_list is a linked list of all the ranges to sample within
a beam. It has the following members:

short int range; the range gate to sample.
long int distance; the range in kilometers.
struct param_list *table; pointer to a table of parameters.
struct range_list *next; pointer to the next entry in the linked

list, NULL terminated.

#include “sample.h”
int add_data(struct beam_list **table,

int beam,
int range,
enum param_code);

add_data

207

The structure param_list is a list of the parameters to sample at a particular
range. It has the following members:

enum param_code code; the parameter to sample.
int total; total number of times a sample has been

taken.
struct time_list *table; pointer to a list of samples.
struct param_list *next; pointer to the next entry in the linked

list, NULL terminated.

The structure time_list is a list of samples. It has the following members:

union {

 double value; a floating point parameter.
 int flag; a boolean flag.
} data; union to store the sampled parameter.
struct time_list *next; pointer to the next entry in the linked

list, NULL terminated.

Each member of the time_list linked list is a sample from one scan. The
list is arranged in time order with the first entry being from the most recent
scan. The length of the list, and consequently how many scans are stored, is
dependent on the number of times add_data is called with that particular
combination of beam, range and parameter.

Returns
Returns zero (0) on success, or (-1) if an error occurs.

remove_table

208

Syntax

Description
The remove_table function frees the memory uses by the sampling table
pointed to be table.

Returns
None.

#include “sample.h”
void remove_table(

struct beam_list **table);

transform_data

209

Syntax

Description
The transform_data function extracts the appropriate parameters from the
fitted data structure pointed to by fit_data and insert them into the sampling
table pointed to by table.

Returns
Returns zero (0) on success, or (-1) if the record cannot be processed occurs.

#include “sample.h”
int transform_data(

struct fitdata *fit_data,
struct beam_list **table);

210

terminal.o

centre_text

211

Syntax

Description
The centre_text function displays the string text centered on the middle of
the screen, on line row, with the terminal attributes attr.

You must call the term_load function before attempting to call this function.

Returns
None.

#include “terminal/terminal.h”
void centre_text(int row,

unsigned attr,
char *text);

confirm_prompt

212

Syntax

Description

The confirm_prompt function displays a box with the message in the
string text on the screen together with two buttons marked “<yes> ” and
“<no> ”. The function waits until the user selects one of the buttons.

You must call the term_load function before attempting to call this function.

Returns
Returns one (1) if “<no> ” is selected, or zero (0) otherwise.

#include “terminal/terminal.h”
int confirm_prompt(char *text);

draw_menu

213

Syntax

Description

The draw_menu function displays a menu on the screen with entry cursor hi-
lighted.

You must call the term_load function before attempting to call this function.

Returns
Returns the number of entries in the menu.

#include “terminal/terminal.h”
int draw_menu(

struct menu_entry *menu,
int cursor);

draw_menu_item

214

Syntax

Description

The draw_menu_item function prints the entry index of the menu menu on
the screen. If hilighted is not equal to zero then the entry will be hi-lighted.

You must call the term_load function before attempting to call this function.

Returns
None.

#include “terminal/terminal.h”
void draw_menu_item(

struct menu_entry *menu,
int index,
int hilighted);

menu_handler

215

Syntax

Description

The menu_handler function waits until an entry in the array menu is
selected and will return the index of the selected entry. The entry with index
cursor is hi-lighted initially.

The menu can be operated by either the mouse or the keyboard. Menu entries
are hi-lighted by either moving the mouse cursor over them, or by pressing the
up and down cursor keys. Control is returned to the task by clicking a mouse
button or by pressing the return key.

Two types of menu entry are supported, buttons or fields.

Clicking or pressing return when a button is hi-lighted will immediately return
control to the task. A button can be switched between two states, de-selected
and selected, by setting the appropriate entry the menu structure. This allows
both push buttons and switches to be implemented. The menu handler does not
automatically select and de-select buttons, and it is the responsibility of the
calling task to update the menu entry as appropriate for the type of button.

Hi-lighting a field and pressing any key other than return will enter the edit
mode and text can be typed into the field. Pressing “<enter>” or “<escape>”
will leave the edit mode and return control to the task.

The elements of the array menu should be structures of the type menu_entry .
The array should be terminated with a zero initialized element:

#include “terminal/terminal.h”
void menu_handler(

struct menu_entry *menu,
int cursor);

struct menu_entry menu[]={
 {4,2,MENU_BUTTON,SLC_ON,SLC_OFF,
 CRS_ON,CRS_OFF,0,0,”No”},
 {4,2,MENU_BUTTON,SLC_ON,SLC_OFF,
 CRS_ON,CRS_OFF,0,0,”No”},
 0};

menu_handler

216

The structure menu_entry has at least the following members :

int row; screen row to display entry
int col; screen column to display entry
enum menu_type; type of menu entry
unsigned attr_slct_on; text attribute for selected and hilighted
unsigned attr_slc_off; text attribute for selected and not

hilighted
unsigned attr_crs_on; text attribute for not selected and

hilighted
unsigned attr_crs_off; text attribute for not selected and not

hilighted
int select; flag for when entry is selected
int len; length of text field
char *text; text string for entry

The row and col entries refer to the screen position at which to display the
entry.

The type can be of either MENU_BUTTON or MENU_WRITE, implying
either a button or a text field that can be edited.

The four attributes are the attributes used by term_type to display the text of
the menu entry for each of the four conditions.

If the member select is not equal to zero then the menu entry is selected and the
attribute attr_slc_off or attr_slc_on is used to display the text when the entry is
hi-lighted or not hi-lighted by the cursor, otherwise the attribute attr_crs_on or
attr_crs_off is used.

The string text contains the text that will be displayed as the menu entry. For
writable fields this should point to the text array into which the text should be
written.

The member len is used to fix the width of the fields that can be edited, if this is
set to zero then the field width will be calculated from the initial string stored
in the array text.

You must call the term_load function before attempting to call this function.

Returns
Returns the array index of the menu item hi-lighted when the mouse button was
clicked or return was pressed.

report_error

217

Syntax

Description
The report_error function displays a box with the message in the string
text on the screen together with a button marked “<Continue> ”. The
function waits until the user clicks on the button or presses the return key.

You must call the term_load function before attempting to call this function.

Returns
None.

#include “terminal/terminal.h”
void report_error(char *text);

setup_mouse

218

Syntax

Description
The setup_mouse function sets up the mouse to work with the menu
system.

You must call the term_load function before attempting to call this function.

Returns
None.

#include “terminal/terminal.h”
void setup_mouse(void);

show_message

219

Syntax

Description
The show_message function displays a box with the message in the string
text on the screen.

You must call the term_load function before attempting to call this function.

Returns
None.

#include “terminal/terminal.h”
void show_message(char *text);

220

test_key.o

free_key

221

Syntax

Description
The free_key function releases the proxy created by the register_key
function.

Returns
None.

#include “util/test_key.h”
void free_key(void);

register_key

222

Syntax

Description
The register_key function creates a proxy that is triggered whenever a
key press occurs. The proxy can be tested for using the test_key function.

Returns
Returns one (1) if the proxy was successfully created, or zero (0) if an error
occurred.

#include “util/test_key.h”
int register_key(void);

test_key

223

Syntax

Description
The test_key function tests whether a message received from the process
identified by pid, was a proxy created by the function register_key and
triggered as a result of the user pressing a key.

Returns
Returns one (1) if the message was the result of a key press, or zero (0)
otherwise.

#include “util/test_key.h”
int test_key(pid_t);

224

Appendix A

Software Organization Chart

225

226

Appendix B

Directory Structure

22
7

alter

diagnostic

displays

drivers

echo_data

errlog

fit_buffer

fitacf

lib

raw_write

revision

scheduler

summary

support

tcpip

a_d_test

test_dio

test_echo

test_gbuf

control_mod

logo

compress

sd_summary

vlptm

display

fit_buffer
qltp

a_d_driver

gps_clock

radops_dio

gbuf

control_lib

task_lib

close_file

ctrig

cmp_fit

plot_cmp

tplot_cmp

client

echo_dataIP

server

echo

filer

fit_buffer

gbuf

geo

graph

terminal

util

doc

errlogs

scdlogs

scripts

tables

usr

bin

include

lib
src

bin

include

lib

src

normal_scan

support_lib

test_scan

radops

228

Appendix C

File List

File List

229

radops/:

./ doc/ make_radar.log tables/

../ errlogs/ scdlogs/ usr/
bin/ include/ scripts/
demo.dat lib/ src/

radops/bin:

./ cmp_fit* errlog* plot_cmp* test_dio*

../ compress* fit_buffer* qltp* test_echo*
a_d_drive* control_mod* fitacf* radops_dio* test_gbuf*
a_d_test* ctrig* fitdisp* raw_write* tplot_cmp*
alter* display* gbuf* schedule* vlptm*
client* echo_data* gps_clock* sd_summary*
close_file* echo_dataIP* logo* server*

radops/doc:

./ history.radops

../ readme.radops

radops/errlogs:

./ ../

radops/include:

./ geo/ read_clock.h

../ get_fit.h read_fit.h
RCS/ get_status.h read_raw.h
a_d_drive.h graph/ sample.h
dio.h log_error.h station.h
dma-addr.h message.h task_msg.h
dma-alloc.h name.h task_write.h
echo/ option.h terminal/
file_io.h radar_id.h types.h
filer/ raderr.h user_int.h
fit_buffer/ raderr.txt util/
fitdata.h radops.h
gbuf/ radops_version.h

radops/include/RCS:

./ ../ radops.h,v

radops/include/echo:

./ ../ echo_util.h

radops/include/filer:

./ ../ filer.h

radops/include/fit_buffer:

./ ../ fit_util.h

radops/include/gbuf:

./ ../ gbuf_util.h

radops/include/geo:

./ ../ geo.h

File List

230

radops/include/graph:

./ ../ graph_lib.h

radops/include/terminal:

./ ../ terminal.h

radops/include/util:

./ add_point.h radar_name.h test_key.h

../ cnv_time.h read_data.h

radops/lib:

./ ../ control.lib task.lib

radops/scdlogs:

./ ../

radops/scripts:

./ rad_export start_radar*

../ rad_path stop_debug*
debug.sched radops.sched stop_radar*
make_radar* start_debug* tidy_up*

radops/src:

./ displays/ fit_buffer/ revision/ support/

../ drivers/ fitacf/ sbin/ tcpip/
alter/ echo_data/ lib/ scheduler/
diagnostic/ errlog/ raw_write/ summary/

radops/src/alter:

./ alter.c control.info makefile

../ alter.h main.c

radops/src/diagnostic:

./ a_d_test/ test_dio/ test_gbuf/

../ sbin/ test_echo/

radops/src/diagnostic/a_d_test:

./ atest.c makefile

../ control.info

radops/src/diagnostic/sbin:

./ a_d_test* test_echo*

../ test_dio* test_gbuf*

radops/src/diagnostic/test_dio:

./ control.info dio_test.h test_dio.c

../ dio_test.c makefile

radops/src/diagnostic/test_echo:

./ control.info test_echo.c

../ makefile version.h

File List

231

radops/src/diagnostic/test_gbuf:

./ control.info test_gbuf.c

../ makefile version.h

radops/src/displays:

./ ../ display/ fitdisp/ qltp/ sbin/

radops/src/displays/display:

./ control.info main.c

../ display.c makefile
colours.h display.h version.h

radops/src/displays/fitdisp:

./ build_table.h graphics.c transform.h

../ control.info makefile version.h
build_table.c fit_disp.c transform.c

radops/src/displays/qltp:

./ control.info plot.c qltp.h

../ graphics.c plot_file.c version.h
config.h makefile qltp.c

radops/src/displays/sbin:

./ ../ display* fitdisp* qltp*

radops/src/drivers:

./ a_d_driver/ gps_clock/ sbin/

../ gbuf/ radops_dio/

radops/src/drivers/a_d_driver:

./ dt.ext dt_strig.c

../ dt.h main.c
control.info dt2828.c makefile
dma-alloc.c dt2828.h pragma.h
dma.dec dt_etrig.c set_clock.c
dma.h dt_int.c version.h
dma_init.c dt_int_handler.c
dt.dec dt_reset.c

radops/src/drivers/gbuf:

./ control.info makefile version.h

../ gbuf.c pal_table.c

radops/src/drivers/gps_clock:

./ bc620.h gps_time.c

../ control.info makefile
bc620.c gps_clock.c version.h

radops/src/drivers/radops_dio:

./ control.info logger.h tsg.h

../ display.c main.c version.h
ASM/ do_op.c main.h watchdog.c
DIO.c do_op.h makefile watchdog.h
DIO.h forbid_freq.c port.h
PIO48.h forbid_freq.h reset.c
bcd.c logger.c tsg.c

File List

232

radops/src/drivers/radops_dio/ASM:

./ out_tsg.c out_tsg_b.a readme

../ out_tsg.l out_tsg_b.l
out_tsg.a out_tsg.o out_tsg_b.o

radops/src/drivers/sbin:

./ ../ a_d_drive* gbuf* gps_clock*

radops/src/echo_data:

./ control.info echo.h version.h

../ echo.c makefile

radops/src/errlog:

./ control.info makefile

../ errlog.c

radops/src/fit_buffer:

./ control.info makefile

../ fit_buffer.c version.h

radops/src/fitacf:

./ fitacf.c rang_badlags.c

../ fitacf.ext remove_noise.c
acf_preproc.c fitfile.h sd_swab.c
acf_preproc.h ground_scatter.c swap_data.c
badlags.c hardware.c swap_parms.c
calc_phi_res.c inx_close.c transmit_data.c
control.info makefile uname.h
dbl_cmp.c math_handler.c version.h
elev_goose.c more_badlags.c write_header.c
elevation.c my_math.h xfer.c
endian.h noise_acf.c xfer.h
fit_acf.c noise_stat.c
fit_noise.c omega_guess.c
fit_prio.h proc_rec.c

radops/src/lib:

./ control_lib/ task_lib/

../ slib/

radops/src/lib/control_lib:

./ dma-addr.c message.c read_raw.c

../ get_fit.c option.c sample.c
a_d_drive.c get_status.c raderr.c task_write.c
control.info log_error.c read_clock.c user_int.c
dio.c makefile read_fit.c

radops/src/lib/slib:

./ ../ control.lib task.lib

radops/src/lib/task_lib:
./ file_io.c makefile read_raw.c
../ filer.c message.c sample.c
add_point.c filer.ext pal_table.c terminal.c
cnv_time.c gbuf_util.c radar_name.c terminal.ext
cnvt_coord.c gfont.c read_clock.c test_key.c
control.info graph_lib.c read_data.c
echo_util.c log_error.c read_fit.c

File List

233

radops/src/raw_write:

./ compress.h makefile version.h

../ control.info raw_write.c
compress.c header.c record.h

radops/src/revision:

./ control_mod/ sbin/

../ logo/

radops/src/revision/control_mod:

./ control_mod.c

../ makefile

radops/src/revision/logo:

./ ../ logo.c makefile

radops/src/revision/sbin:

./ check_id* logo*

../ control_mod*

radops/src/sbin:

./ alter* errlog* fitacf* schedule*

../ echo_data* fit_buffer* raw_write*

radops/src/scheduler:

./ execute.c schedule.c version.h

../ main.c schedule.h
control.info makefile test.sched

radops/src/summary:

./ compress/ sd_summary/

../ sbin/ vlptm/

radops/src/summary/compress:

./ buffer.h control.info

../ colours.h makefile
buffer.c compress.c version.h

radops/src/summary/sbin:

./ compress* vlptm*

../ sd_summary*

radops/src/summary/sd_summary:

./ makefile sd_summary.c

../ print_list.c version.h
control.info print_val.c write_header.c

radops/src/summary/vlptm:

./ control.info read_datrec.c write_header.c

../ linreg.c scntabl.c
bigtabl.c lshell.c version.h
bigtabl.h makefile vlptm.c
bigtabl_def.c medfilter.c vlptm.h

File List

234

radops/src/support:

./ close_file/ ctrig/ sbin/

../ cmp_fit/ plot_cmp/ tplot_cmp/

radops/src/support/close_file:

./ close_file.c makefile

../ control.info version.h

radops/src/support/cmp_fit:

./ cmp_fit.c control.info version.h

../ colours.h makefile

radops/src/support/ctrig:

./ control.info makefile

../ ctrig.c version.h

radops/src/support/plot_cmp:

./ control.info graphics.c transform.c

../ decode.c makefile transform.h
build_table.c decode.h plot_cmp.c version.h
build_table.h do_filter.c size.h

radops/src/support/sbin:

./ close_file* ctrig* plot_cmp*

../ cmp_fit* fitfile* tplot_cmp*

radops/src/support/tplot_cmp:

./ decode.c makefile

../ decode.h tplot_cmp.c
control.info graphics.c version.h

radops/src/tcpip:

./ client/ sbin/

../ echo_dataIP/ server/

radops/src/tcpip/client:

./ connex.h makefile~

../ decode_msg.c msg_io.c
client.c fit_data.h read_data.c
connex.c makefile read_data.h

radops/src/tcpip/echo_dataIP:

./ decode_msg.h msg_io.c version.h

../ echo.h msg_io.h
cmp_fit.h echoIP.c socket.c
decode_msg.c makefile socket.h

radops/src/tcpip/sbin:

./ client* server*

../ echo_dataIP*

File List

235

radops/src/tcpip/server:

./ makefile server.c timer.c

../ msg_io.c socket.c version.h
cmp_fit.c msg_io.h socket.h
cmp_fit.h process_msg.c srv_prio.h

radops/tables:

./ cnvtabl_h.dat invtabl_t.dat

../ cnvtabl_j.dat invtabl_w.dat
bmrtabl_d.dat cnvtabl_k.dat lamda.dat
bmrtabl_e.dat cnvtabl_n.dat logo.img
bmrtabl_f.dat cnvtabl_t.dat map_data
bmrtabl_g.dat cnvtabl_w.dat overlay
bmrtabl_h.dat gb_doppler_gates.dat pal_reg.16
bmrtabl_j.dat hardware.dat pal_reg.256
bmrtabl_k.dat invtabl_d.dat palette
bmrtabl_n.dat invtabl_e.dat qltp_drpl.dat
bmrtabl_t.dat invtabl_f.dat restrict.freq
bmrtabl_w.dat invtabl_g.dat search.freq
cnvtabl_d.dat invtabl_h.dat sigma.dat
cnvtabl_e.dat invtabl_j.dat sigma.dat.b
cnvtabl_f.dat invtabl_k.dat sy_doppler_gates.dat
cnvtabl_g.dat invtabl_n.dat

radops/usr:

./ ../ bin/ include/ lib/ src/

radops/usr/bin:

./ normal_scan.debug* test_scan.debug*

../ normal_scanD*
normal_scan* test_scan*

radops/usr/include:

./ freq_band.h support.h

../ report_error.h sync.h
default.h summary_control.h

radops/usr/lib:

./ ../ support.lib

radops/usr/src:

./ normal_scan/ test_scan/

../ support_lib/

radops/usr/src/normal_scan:

./ freq_band.h normal_scan.c

../ makefile pulse_code.h

radops/usr/src/support_lib:

./ forbid_freq.h read_uconts.c

../ init_proxy.c summary_control.c
blkin.c makefile support.c
blkin.h new_tsg.c sync.c
control.info phase_decode.c tmseq.c
core_math.c pulse_code.c tmseq.dec
core_math.h pulse_code.h tmseq.ext
define.h pulse_math.c ucont.h
fclr.c pulse_math.h version.h
fclr.h radar.c
forbid_freq.c radar.h

File List

236

radops/usr/src/test_scan:

./ ../ makefile test_scan.c

