Radops 2000
Reference Manual

Index

o [T 1 T o 7
Software Organization...........ccoeeeeeeeeeeieei 10
System ReqUIrEMENIS........ooeeiiiiiiiiiiiiiie e 11
Compiling The SOftWare............eevviiriieeiii e 12
Running The Software..........ccccooeeiiii 14
Command Line OPLIONS.........uuuvvuveiiiiiiiiiiiiiieeeeea e 15
The SCheduler ... 16
Changing Radar Parametersuuvvveuiiiiiiiiiineeeeeeeeeeee, 18
DebUg MOE........oeeiiiii e 20
Compiling Control Programs.............ccccevvveiviiiieiiieieiinininnns 21
Hardware DIVEIS........ i 22
A 0NV .. 23
ODUT 24
OPS_CIOCK ... 25
(=10 (o] o o | o TP T TP PPPRP 26
Primary TasksS oo 27
AT 28
€Cho _data..........ooiviii 30
EFl0Q oo 31
fILACT e 32
fit DUREr o, 34
L= U L1 TR 35
SCNEAUIBT. ... 37
DISPlay TASKS .evveeeieiiiiiiiie e 39
ISPIAY e 40
110 1] TSSO 42
o |11 TSR 44
Summary Data TasKScooviiiiiiiiiiiiiieees e a7
COMPIESS. ettt ettt ettt ettt e e et et e e et et e e e e erba e e aeanans 48
SA_SUMMIAIY.. ittt e e e eeeeaeees 50
VIPEM e 51
Internet ACCESS SOftWAIE..........coovi i 53
ClIBNE e 54
€ChO_datalP........coooviiiiiii e 55
SEIVEL ittt 56
Off-line SUpPPOrt SOftWAKE........ccovvii i, 57
ClOSE_file...ccieee e 58
CMP It e 59
o3 11T 60
1o A o3 1 1] 61
110] 0] A 1 1 o 62
DiagnostiC ULIHIES.....ccvveeei e e e 63
= o [(=] A 64
1= 1S] Ao 10 L 65
tESt ECHO0....ee i 66
teSt gbUS e 67
Software Version Control............cevivieeiiiieieiiieeeeece e 68
CONIOL_IMOd... oo iiiiiiiiii e 69
(000 oo 71
The Control LIDrary ... 72

FAAOPS_PAIMNS...ciiiiiiiiiiiiiiiiiiiir e e e e e e e e aeeee 74
(= 110 I | - WS 76
fitdata ... 77
A 0_ANVE.O et 78
JO_SCAN....cii i 79
get_buf_adr.......cccceeiiiiii 80
get_buf NUML......... e 81
get_buf_Size.....oooo 82
get_SCan_reSel.........occiiiiiiiiiiiii 83
get_scan_status...........cceviiiiiiiiiiiiiiin 84
SCAN_TESEL.....iiiiiiiiiici e 85
(o [To 2o TP 86
NI XE PIA e 87
SeNnd _fClr ..., 88
1] Lo L o TSP 89
send_tSg NO_Stal........cccoovviiiiiiiiiiiiiiiiieeeeiie s 90
set_antenna_pPid ... 91
set_beam_pid...........coeiiiiiiiiii s 92
set_filter_pid.........coovvviiiiiiiii 93
set_freq_Pid........ooovvviiiiiiii 94
set_test_ mod_pid...........ovviiiiiiiiiiiiin 95
SEt_1SO PI..eeeeeiiiiieeiiiiiiiii e 96
Verify id_Pid......cooovviiiiiiiii e 97
L fILLO e 98
[0 =] | PR 99
01 STALUS.O.... it 100
g€t STALUS....uueiiiiii e 101
get_status_pid.........ccceeiiiiiiiiiiiii e, 102
[oTo T =T ¢ (o] o o SR 103
ToTo T =11 o] S 104
I LCESST= Vo = o 105
T ESST Vo = P 106
MESSAJE_AITAY.....ueerrneeeineereieeerieeriaerainearrnnaaes 107
LEESESY= (o [I oo R 108
message Pid_array......ccccceeeveeeeriiieereiieneeeeannn 109
162 1S G o 110
(o] o] 1o o 1o 1P 111
process_file...ccooovvviiiiiii 112
o] foTed=TSI ST o] o] i o o P 114
=T Lo [o3 (01 o 116
[£=T= Lo [o] (0T 117
(Y= Lo [118 o Y 118
read fit....ooooeer e, 119
Y= Lo [- 11V o 120
(== Lo = 1 121
read_raw_dataceeeeeiiiiiiiiii 122
SAMPIE.O. ..t 123
add_data........coooiiiiiiii 124
remove_table.............coii 126
transform_data..........ccceeeiiviiiiiiiiii 127
TASK_WIITE. 0. et 128
tASK_ClOSE.....coiiiiiiiiiiiie e 129

TASK_OPEN...oiiiiiiiiii e 130

162 1S3 G [11 131

tASK_WILE_AUX....cevviiiiiiiiiee e 132
task_write_fit........coooiiiiiii 133
tASK_WITE_TAW....eveviiiiiiii e 134
USEI_INT0 Lottt 135
scheduled............ooviiiiiii 136
FEQISter_PrOgIam .. .ue e e e e e e e e e e eeee e 137
USEI_INTeeiiiiiiiiiie e 138
The Task IBrary ... 141
AAA_POINT Q. et 142
Add_POoiNt.......cooiiiiiiiiiii e 143
CNV_HIME.0. ettt 144
LM 145
YEAI_SEC...ciuuiiiiiiiiii ettt 146
(o3 01V ot eTo] (o 1o KO 147
CUDIC. ... 148
[o[=ToTo | £=T o] oI Lo NPT 149
1080_IPOS. .. 150
= (o F= Ll oo 1 R 151
€ChO ULl 152
€ChO_TegiSter.......ccoviiiiiiiiiie e 153
L1 L= (o X o PR 154
decode MSQ......ccovvviiiiiiiiiiiie e 155
OPEN_fil@ . i 157
fIEM.O e 158
FIlEr 159
leaf NamMe........coiiiiiiie e 160
OBUF_ULILO. e 161
(o= o 11 o] = | PSR 162
refresh_display.........ccccovvviiiiiiiii, 163
graph_liD.0 oo 164
BYCOIOL.... e, 165
(o3 [0 166
Lo 01V (o T o] o] .o S 167
COlON ..o 168
COPY_gbuf. ..o, 169
(o70] 0) VA oG] 170
(o70] o) 2 0101} Yo [o] o A 171
ArAW ..o 172
draw_ellipSe......ccocvveeiiiiiieie e 173
draw_polygon........ccoov v 174
draw_rectangleccccviieiii e 175
Araw_teXxt. ..o 176
free_gbuf..c.oooee 177
make _gbuf..........cccoovi i 178
MOV . ..ottt e e 179
Set_gbUL. .o 180
WIItE_PIXEL oo 181
[oTo T =T £ (o] oo JO PP STSPPPP 182
ToTo [=11 (o] GO 183
LTSS T=To [N o PP 184
MNESSATE ... eeeveieeenie et e e e e e e e e 185
MESSAJE_AITAY......iivrnieirieeetieeete e e e eais 186

MESSAGE PId..eeeeeiiiieeeeiiiieiiiiii e 187

message _Pid_array........cccceeeieeeeerineereeinneenennnn 188

TASK 0 .. 189
(= o b= L 0 =T 0 1 T3 o TP PP PPPPPPPPPPPPTN 190
Fadar_COUR.......uuuiiiiiii e 191
FAAAI_NAME .. .ooiiiiiiii e 192
FeAd_ClOCK.O....uvviii i 193
read_ClOCK...........uueiviiiiiiiiiiii e 194
(1= (o [0 F= 1 c= T U PP TP TP 195
read_double............oooiiii 196
read_floak..........ooovviiiiiiiii e 197
FEAA_IONG...coiiiiiiiiiiiii e 198
read_Short.........ooouiiiiiiii e, 199
FeAd_fit Q... 200
read fit. ..o 201
Y= (o [2= \11 VX o DTSR 202
(=T o IR = U P 203
read_raw_dataccoccciiieiiiiniii e, 204
SAMPIE.O. et 205
add_data.......ccceeiiiiiii e 206
remove table.............ccoooeii 208
transform_data..............ccooeeiiiiiii 209
tErMINALO ..o 210
(oF =T g S (2« RN 211
CONfIrM_Prompt.......cceeiiiieceeic e 212
Araw_MEeNU.....ccooviiiiiiiiiie e 213
draw_menu_itemcccooeeiiiiiiiiiiee e, 214
menu_handler.............iiiiiiiiiiii e, 215
FEPOM_BITON vt eees 217
SEIUP_MOUSE....etuneiieiii et et 218
SNOW_MESSAGE.......cevvvviiiiiiiiieeeeeeeeeiiiie e 219
TESE KEBY.Q. i 220
fre@ KEYuun i 221
=To 1Y (=T) PN 222
TESE KEY. . oiieiii e 223
Appendix A:Software Organization Chart..............occovvviiiiineenennns 224
Appendix B:Directory StruCture.............cevveevviiinieieiiiieeeeeiieeeeens 226

APPENIX CiFile LiSt. ..o iiiiiii e 228

Introduction

Introduction

Radops 2000

The Radar OperatingSystem Radop9 is a suite of software that forms the
control system for the HF Radars of aper Dual Auroral RadarNetwork
(SuperDARN). It is written under th@NX Operating System, a modern
micro-kernel OS designed with particular emphasis on real-time embedded
control applications.

The Radops software is divided into separate tasks that are each responsiblg
a different aspect of controlling the Radar. They communicate with each oth
using the QNX method dhterPProcessCommunication IPC), message
passing. Messages can be passed between tasks running on different comp
over aL ocalAreaNetwork (LAN), allowing the software to be distributed
across a network of machines.

The Radar consists of an array of Antennas which are electronically steered
into one of sixteen directions or beams.

The radar operates by transmitting a complicated pattern of pulses and then
sampling the reflected echoes. The raw data is then processed by calculatin
the Auto-CorrelationFunction ACF) at seventy five (75) range gates or bins.

Natural and artificial noise is a particular problem at the frequencies the Rad
operates at, and can drown out the echoes from the pulse sequence. So in t
normal mode of operation the software searches for a “quiet” frequency with

low noise level to use at which to transmit the pulses. If the received signal i
too powerful, it can be electronically attenuated within the receiver.

The timing of the pulse sequence must be very accurate and consequently a
separate computer is dedicated to controlling it. When the pulse sequences i
transmitted, all interrupts are disabled on this timing computer to help achie\
the required accuracy. The computer is linked to the main computer using ar
Ethernet LAN connection.

The overall control of the Radar is provided by a program callRaidar

Control Program This is a task supplied by the operator that controls the othe
tasks and determines the mode of operation of the Radar. A set of C librarie
provide the interface between the control program and the other parts of the
Radar software.

The radar tasks can be divided into several groups: driver tasks, primary tas
display tasks, summary tasks. diagnostic and test programs, software versio
control utilities, off-line data processing tasks, and Internet access tasks. The
two most important groups are the hardware drivers and the primary tasks.

for
er

iters

ar
ne

D

-

o

KS,

=)

B

Drivers

Primary Tasks

Introduction

The driver tasks communicate directly with the Radar hardware interface cards.

The taska_d_drive programs the Analogue to Digital Converter (ADC)
card which samples the signal received by the Radar. It uses shared memory
and Direct Memory Transfer (DMA) to achieve the high time resolution
required.

The taskradops_dio runs on the timing computer and controls the Digital
Input/Output board which transmits the pulse sequence. The card is also

responsible for selecting the operating frequency, beam number and attenugtion

level.

The Radar network is synchronized to @Glebal PositioningSystem (GPS)
clock by using a GPS satellite receiver card. The system clock on the main
computer is periodically synchronized to the GPS clock by the driver
gps_clock

The drivergbuf controls the video hardware on the main computer and is
essential for running the many graphical displays that are part Batihaps
software.

The primary tasks are the main programs responsible for processing and
storing the data generated by the Radar.

The taskerrlog logs and records errors and messages from the other parts|of
the software in a plain text file. A new log is created at the start of each day.

The taskschedule , as its name implies determines which control program
should be running and at what time. A text file containing the start times and
command lines for programs to run is periodically loaded by the task. When the
start time of a program has elapsed the current control program is terminate,
and the new one started.

[®X

The taskecho_data distributes data from the control program to the other
parts of the Radar software. Usiagho_data , tasks can be started and
stopped without interrupting the current operation of the Radar

The taskraw_write stores the data generated by the Radar in files on the
hard disk. It compresses the data using a simple algorithm to reduce the
amount of disk space required.

The taskfitacf processes the raw ACFs by attempting to fit them to a
known distribution. This allows parameters like the back-scattered power and
doppler velocity to be derived.

The task is very computationally intensive and processes one block of raw data
while the next is being generated. The thiskuffer temporarily stores
the data from fitacf before returning it to the control program.

The final taslkalter , allows the user to inspect and change the operating
parameters of the control program.

Software Organization

The Radar software is organized within tih@dops ” directory:

/radops/bin binaries of all of the main Radar taskg
excluding control programs.
/radops/errlogs error logs produced bsrrlog
/radops/include header files for the Radar control librgry
and the tasks library.
/radops/lib task and control libraries.
/radops/scdlogs logs produced by the Scheduler.
/radops/scripts shell scripts for making the Radar
software and for starting the tasks.
/radops/src source code for the Radar software.
/radops/tables hardware tables for the Radar.
/radops/usr source and binaries for the control
programs and the support library.

The sub-directories infadops/usr " include:
/radops/usr/bin binaries for the control programs.
/radops/ust/include headers for the support library.
/radops/usr/lib support library for the control progranis.
/radops/ust/src/ source code for the control programs

10

System Requirements

The software is designed to run o@&X network comprising of two or more
machines. One machine contains the DIO card and acts as the timing
computer, a second machine containing the A/D card an@R$eclock
interface card is the main computer and runs the majority of the Radar tasks|.

The software has been tested on QNX version 4.22-4.24 and Watcom C version
9.52-10.6 The operating system should be running in 32 bit mode.

11

Compiling the Software

The Radar software is supplied as a tar archive on either on diskette or via HTP.
The archive contains the source code for the software which must be compiled
before it can be used. Copy the archive

“radops2000.release. x.yytar.F " into the root directory of your main
computer and type:

install -u radops2000.release. x.yytar.F

This will backup any existing Radar software into the directory
“/radops.old " and create the new directory structure for the Radar
software.

The install script will check and if necessary attempt to modify the default logjin
profile to include the environment variables used by the Radar software by
adding the following lines to the filgétc/profile "

. [radops/scripts/rad_export
. [radops/scripts/rad_path

The file “/radops/scripts/rad_export " contains the environment
variables that define where the Radar will store its data files. You may wish tp
alter this file for your particular system.

The install script will then attempt to update the header and data files that afre
specific for a particular Radar.

You will then be asked if you wish to compile the Radar software. If you type
“n” the script will terminate at this point. If you typg™the script
“/radops/scripts/make_radar " will be executed.

A title page showing the version number of the software will be displayed. Th
script then checks which station the software is to be compiled for and prompts
you to confirm that this is correct. Typg™if the station name is correct or
“n” to exit the script.

[¢]

The script will now ask if you wish to install the pre-compiled binaries. Only a
few of the radar tasks contain code that is unique for each site and the archiye
contains a set of binaries that can be quickly copied to'thédps/bin
directory. If you have problems installing the pre-compiled binaries then typg
“n” and the entire set of software will be compiled from scratch.

12

Compiling the Software

Once the software has been compiled or installed you must copy the progran
radops_dio to the timing computer. Assuming that the software has been
installed on node one (1) of your QNX network and the timing computer is
node two (2), enter the following on the node one (1) machine:

mkdir //2/radops
mkdir //2/radops/bin
cp /radops/bin/radops_dio //2/radops/bin/

You should alter theysinit file of the timing computer so that
radops_dio is automatically loaded when the machine is re-booted.

If you need to recompile the software, or you chose not to compile it when yo
first installed the system, you can use the scripgKe radar ”. Type the
command:

/radops/scripts/make_radar

The script will display a title page showing the software version number. It wi
then check which station the Radar software is to be compiled for and promp
you to confirm that this is correct. Typg™if the station is correct om” to
exit the script.

If the station is not correct then you must modify the header file
“/radops/include/radops/radar_id.h " for your particular Radar.
Un-comment the lines of code appropriate for your station and re-run the
“make_radar " script.

=

— =

13

Running the Software

The Radar tasks must be started in a specific order. Assuming that
radops_dio s already running on the timing computer, the script
“/radops/scripts/start_radar " can be used to start the rest of the
software:

#
start the tasks
#

ontty /dev/con2 /radops/bin/errlog
ontty /dev/con3 /radops/bin/a_d_drive
ontty /dev/con3 /radops/bin/gps_clock
ontty /dev/con4 /radops/bin/echo_data
ontty /dec/con3 /radops/bin/fit_buffer
ontty /dev/con3 /radops/bin/fitacf

ontty /dev/con3 /radops/bin/rawwrite

There are other Radar tasks, suckdassummary andviptm , that can be
added to this script depending on the way you operate your Radar.

Usually control programs are started by the scheduler so the last line of you
“start radar " script should run the Scheduler:

ontty /dev/con5 /radops/bin/schedule radops.sched

The Radar can be stopped by creatingtag' radar " script that kills all the
Radar tasks in turn:

#
stop the tasks
#

slay -f schedule
slay -f rawwrite
slay -f fitacf

slay -f fit_buffer
slay -f echo_data
slay -f a_d_drive
slay -f gps_clock
slay errlog

Under the scheduler the current control program is a child process of
schedule , so killing the scheduler will also terminate the control program.

Once the rest of the Radar software has been started then a control prograr
can be run. The programs are located in the direcfoagddps/usr/bin
Your PATH environment variable will already include this directory so you
should just be able to type the name of the program to get it to run.

jun

14

Command Line Options

Many Radar Control Programs support optional parameters that can be pass
in on the command line. These follow the normal UNIX convention for
optional command parameters:

normal_scan -sb 3 -eb 12

This would forcenormal_scan to start a scan at beam 3 and end the scan ¢
beam 12. The progranormal_scan is the program the Radar normally
runs for SuperDARN common mode time.

Normally you can find out about the command line options by usingsthe
command. The usage message producatbhyal_scan is:

normal_scan [-dt day_time] [-nt night_time]
[-df day_start_freq]
[-nf night_start freq]
[-dr day_frang]
[-nr night_frang] [-xcf xcount]
[-dm day_mpinc] [-nm night_mpinc]
[-sb start_beam] [-eb end_beam]
[-af start_freq] [-st scat_thr]
[-ft frequency table file]
[option file]

15

ed

The Scheduler

Normally control programs are not started by an operator. Instead a task cal
schedule is responsible for starting and stopping programs. It uses a scrip
called a schedule file that specifies what time and date a program is due to g
and what command line to use to execute the program:

test.sched

default /radops/usr/bin/normal_scan

1996 3 19 14 50 /radops/usr/bin/sdcusp_2200
1996 3 19 15 00 /radops/usr/bin/normal_scan
1996 3 19 15 30 /radops/usr/bin/sdcusp_2200
1996 3 19 15 40 /radops/usr/bin/normal_scan

Each line in the schedule file corresponds to a command to execute. Lines
beginning with a #” are treated as comments and are ignored.

If a line begins with the wordefault , then the rest of the line is treated as
the command to execute if no other program is due to start. A schedule file
must include a default program.

Other lines are interpreted as :

<year> < month>< day> < hour> < minute> < command line

The time is specified in UTC format. After the time has been read, the
remainder of the line is treated as the command line to execute.

The scheduler scans through the file and loads and runs the appropriate
control program. Every thirty seconds the scheduler checks through the load
schedule, if the start time of a new program has expired then the current
program is stopped and the new one started.

To run the scheduler enter the command :

schedule filename

Wherefilenameis the name of the schedule file to run.

The scheduler will then scan through the schedule file and load and run the
appropriate Control Program. Every thirty seconds the scheduler checks
through the loaded schedule; if the start time of a new program has expired
then the current program is stopped and the new one started.

Periodically the scheduler reloads and re-processes the schedule file. This

ed

tart

allows any alterations or additions to the schedule to be correctly identified and

acted upon. By default the schedule file is reloaded every hour, however this
can be changed by including an option flag when the scheduler is started :

schedule -h filename reload filename every hour
schedule -d filename reload filename every day
schedule -t filename eload filename every 10 minutes.

16

The Scheduler

The scheduler can also be operated in verbose mode by specifying the “
option on the command line. In this mode the scheduler will display the
currently operating schedule every thirty seconds. This is useful in checking
that the schedule file has been correctly interpreted.

The scheduler will record all of its actions in a special log file stored in the
directory ‘/radops/scdlogs ". Each day a new log file is created with the
filename ‘scdlog .ddd’ wheredddis the day of the year.

The scheduler will periodically check to see whether the control program is s
running. If it finds that it has died, it will attempt to restart it. If the current
control program does not restart then the scheduler will load the default
program instead.

kil

17

go

show [variable_name].

<variable> = < value>

Changing Radar Parameters

When a control program is running it is useful to be able to and view or alter
the operating parameters. This is accomplished by using theltask ,

which received the current radar parameters from the control program and t
enters a command line shell denoted by tieprompt.

The shell supports three commands :

go
show

<variable> = < value>

Typing “go” will send the altered parameters back to the control program so
that they will take affect at the start of the next integration period.

Typing “show” will list the values of the specified variables. If no variable
names are listed then the entire set will be shown.

A new value is assigned to a variable by using #iesfgn:

bmnum=12
combf=Hello world

There should be no spaces between the valuerthedn, or the variable
name.

18

nen

Changing Radar Parameters

The radar parameters that can be altered are :

intt the integration period.

txpl the pulse length.

mpinc the lag separation in micro seconds.
mppul the number of pulses in a pulse pattern.
mplgs the number of lags in the lag table.
nrang the number of range gates.

frang the distance in kilometers to the first range gate.
rsep the range separation in kilometers.
bmnum the current beam number.

xcf the cross correlation flag.

tfreq the transmitted frequency.

scan the scan mode.

mMXpwr the maximum power allowed.

Ivmax the maximum noise level allowed.
cp the program id.

usr_resS1 user defined short variable 1.
usr_resS2 user defined short variable 2.
usr_resS3 user defined short variable 3.
usr_resL1 user defined long variable 1.
usr_resL2 user defined long variable 2.

combf the comment buffer.

The author of the control program can also specify other variables that can b
altered. The names and values of these optional variables can be found by u

the “show” command.

19

sing

Debug Mode

Using the debug modes of the driver tasks, the Radar software can be tested
a computer without requiring the hardware interface cards. This allows new
control programs to be checked out before they are run on an actual Radar.

All the Radar tasks will behave exactly as they would on an actual Radar,
fitacf will process raw data from the control prograraw_write and

the summary tasks will open and write data files, and the display tasks can b
run.

As the timing sequence is generated but not transmitted, the task
radops_dio can be run on the same computer as the rest of the Radar

on

D

software, so that the software in its entirety can be tested on a single computer.

The script Start_debug " will start up the software in debug mode.

Unfortunately, in debug mode, no data is actually produced, however there a
functions in the control library that allow data to be read in from a file. This
allows the control program to simulate an operational Radar by using the rau
data taken from a file.The source code for Radar control programs is located
the directory fradops/usr/src ". Each program has its own sub-directory
that contains the C source code for the program and any extra files that it
requires.

re

=

n

20

Compiling Control Programs

Each source directory containsnakefile that is used to compile the
program (see the QNX Utilities Reference guide for more about makefiles). A
typical makefile looks like this:

CFLAGS = -Oneatx -l control.lib support.lib

normal_scan : normal_scan.o
$(LINK.c) normal_scan.o \
-0 normal_scan
usemsg normal_scan normal_scan.c

The first line of themakefile ensures that the program is compiled using the
two libraries needed to operate the Radeontrol.lib "and
“support.lib "

The location of these two libraries are defined by the environment vali&ble
used by the C compiler to locate library files.

To compile the program type:

make

The compiled program should then be copied to the directory
“/radops/ust/bin

21

Hardware Drivers

22

Syntax

Options

Description

a_d_drive

a_d _drive [-d][nameg

-d run the driver in debug mode by disabling the
hardware interface.

name register the driver under this name with the Operating
System.

11

The drivera_d_drive provides the software interface to the dt2828 Analogu
to Digital Converter card.

The card can be programmed to use either an internal or external trigger
signal, it can sample over multiple channels and it can use Direct Memory
Access to store the sampled data in memory.

The driver supports two memory buffers that are used for the DMA transfers.
The buffers use shared memory so that the control program can access and

process the raw data. Two buffers are used so that while one is being procegsed

the other can be used to sample the next integration period.

By starting the driver using thed'” option it will run in “debug” or
simulation mode and will not attempt to program the dt2828 card. This allow
the software to be tested without the card installed on the main computer.

U7

The optionahamestring is the name used to register the task with the
operating system. By default the driver is registered under the name
“a_d drive . When another task wishes to locate the driver it must use thig
name. This allows two Radars to be connected to the same network as each
driver must have a unique name.

23

Syntax

Options

Description

gbuf

gbuf [-V] console ...

gbuf [-f]

-V create consoles using VGA graphics modes.

-f free up shared memory and exit.

console the gnx console numbers to use as graphics consqles.

The drivergbuf controls the graphics hardware on the main computer. It
converts one or more QNX text consoles into graphics display consoles in
either SVGA or VGA modes.

For each graphics console the driver creates an area of shared memory to use as

a frame buffer. Graphics operations are performed on the buffer and whenever
the console becomes active it is displayed on the screen.

The console numbers to use must be included on the command line. Once ja
console has been claimed for graphics it cannot be used for command line
input.

By default the driver uses an SVGA mode of 800x600 pixels and 256 colours.
A VGA mode of 640x480 pixels and 256 colours can be used by including the
“-v ” command line option.

174

When the driver is terminated it will not automatically relinquish the shared
memory it has claimed as other tasks may also be using it. To force the shared
memory to be released, call the driver using just the “option.

24

Syntax

Options

Description

gps_clock

gps_clock [-d] [nameg

-d run the driver in debug mode by disabling the
hardware interface.

name record the status and diagnostic information in thef|file
calledname

The drivergps_clock controls the GPS receiver card and returns the time
synchronized to the GPS master clock. The driver automatically re-calibrates
the system clock every 500 seconds.

By starting the driver using thed'” option it will run in “debug” or

simulation mode and will not attempt to access the GPS receiver card. This
allows the software to be tested without the card installed on the main
computer.

The optional name string is the filename to use when recording the status ar
diagnostic information, by default it is calleffiddops/gpslog ". The status
is recorded every 500 seconds.

25

d

Syntax

Options

Description

radops_dio

radops_dio [-d] [nameg

-d run the driver in debug mode by disabling the
hardware interface.

name register the task under this name with the Operating
System.

The driverradops_dio is responsible for programming the DIO card which
sets the radar operating frequency, the receiver attenuation, the beam numb
reads the antenna status information, and most importantly, outputs the pulg
pattern that the radar transmits. As this is a time critical operation, interrupt
are disabled on the computer while the sequence is transmitted. Consequen
the DIO card is installed on a secondary timing computer. As the driver
requires direct access to the DIO card it must also be run on the timing
computer and communicate with the rest of the radar software over the
network.

Whenradops_dio s running it displays the current transmission frequency
the beam number, the attenuator setting, whether the radar is in test mode,
AGC and LOW_PWR status bits and what operation is being executed.

The program has sixteen buffers that are used to store timing sequences. Th
control program downloads a timing sequence into one of these buffers prior
outputting it to the DIO card.

=T @

y

e

Two types of timing sequence can be used; one is output on a single beam, the

other includes information about which beam each pulse should be transmitt
on.

By starting the driver using thed'” option it will run in “debug” or
simulation mode and will not attempt to program the DIO card. This allows tf
software to be tested without the rest of the radar hardware, and as the
interrupts are not disabled, the driver can be run on the main computer
allowing all of the software to be tested on a single machine.

The optional name string is the name used to register the task with the
operating system. By default the driver is registered under the name
“/radops_dio ". When another task wishes to locate the driver it must use
this name. This allows two Radars to be connected to the same network as €
driver must have a unique name.

ed

e

ach

26

Primary Tasks

27

Syntax

Options

go

show [variable_name].

<variable> = < value>

alter

alter [namé

name The name of the control program whose parameters
are to be modified.

The taskalter allows the user to change the operating parameters of the
radar.

When run the task receives the current operating parameters from the contr
program before entering a command shell shown byxtherompt. The Radar

will continue to run while the user enters commands to examine and alter thg
parameters.

The shell supports three commands :

go
show

<variable> = < value>

Typing “go” will send the altered parameters back to the control program so
that they will take affect at the start of the next integration period.

Typing “show” will list the values of the specified variables. If no variable
names are listed then the entire set will be shown.

A new value is assigned to a variable by using tiesfgn:

bmnum=12
combf=Hello world

There should be no spaces between the valuerthedn, or the variable
name.

The radar parameters that can be altered are :

17

28

alter

intt the integration period.

txpl the pulse length.

mpinc the lag separation in micro seconds.
mppul the number of pulses in a pulse pattern.
mplgs the number of lags in the lag table.
nrang the number of range gates.

frang the distance in kilometers to the first range gate.
rsep the range separation in kilometers.
bmnum the current beam number.

xcf the cross correlation flag.

tfreq the transmitted frequency.

scan the scan mode.

mMXpwr the maximum power allowed.

Ivmax the maximum noise level allowed.
cp the program id.

usr_resS1 user defined short variable 1.
usr_resS2 user defined short variable 2.
usr_resS3 user defined short variable 3.
usr_resL1 user defined long variable 1.
usr_resL2 user defined long variable 2.

combf the comment buffer.

The author of the control program can also specify other variables that can b
altered. The names and values of these optional variables can be found by u
the “show” command.

The optionahamestring on the command line is the name registered by the
control program with the operating system, by default it is
“/control_program ”

sing

29

Syntax

Options

Description

echo_data

echo_data [-s stimg [-t ttimeg [-n
echo_namkg-e err_namé

-s stime the time-out period for a single task.

-t ttime the time-out period for all the tasks.

-n echo_name register the task under this name with the Operating
System.

-e err_name sends errors to the task registered under the namg
err_name

The taskecho_data distributes both the raw ACF data and the fitted data
produced byitacf to other tasks. Tasks that register themselves will
automatically receive the next block of data as it becomes available.

When a task wishes to register itself it sends a message containing a text st
to associate with it. The taskho_data adds the process idi¢) of the
registering task and the string to a table stored in memory.

Each timeecho_data receives a message from the control program it
duplicates it and attempts to send it in turn to each task recorded in the tabl
If a task has died theecho_data will remove that entry from the table and
move on to the next entry in the list.

If the task does not reply to the message within the time allocated for a singl
task as set by thes ” option, thenecho_data will time out and move onto
the next task in the table. If tkeho _data cannot send the message to all the
tasks within the total allocated time as set by thée' ‘bption, then it will not

send to the remaining tasks in the list. When the next block of data is receive
the task will try sending to all the tasks again. By default, the time-out perioq
for a single task is one (1) second, and the total time-out period is five (5)
seconds.

The “n ” option specifies the name used to register the task with the operatirn
system. When another task wishes to loeateo_data it must use this name.
By default the task is registered under the nafeehb_data .

The “e " option specifies the name of the error log that the task reports error,
and warnings to. By default errors are sent to the task registered under the
name‘/errlog "

ing

D

117

d1

[2)

30

Syntax

Options

Description

errlog

errlog [namé
name register the task under this name with the Operating
System.

Theerrlog task reports and logs errors sent from the other radar tasks. Th
log records the time at which the message was sent, the process id of the ta
reporting the error, its name, and a text string that describes the error.

Errors are printed to the console on whichehtog task runs and also
recorded in a file stored in the directory “/radops/errlogs”. Each day a new lo
file is created with the filenanesrlog .ddd,wheredddis the day of the year.

The optionahamestring specifies the name used to register the task with the
operating system. When a task wishes to locate the error log it must use thig
name. By default the task is registered under the n&mioy "~

D

31

Syntax

Options

Description

fitacf

fitacf [-e err_namé [-f buf namg¢[namé

-e err_name send errors to the task registered under the name
err_name

-f buf_name send the output to the buffer task registered as
buf_name

name register the task under this name with the Operating
System.

The tasKitacf calculates the derived parameters such as velocity and
spectral width.

The task receives the raw ACF data from the control program and attempts {
fit it to the expected distribution. From this a number of parameters are
calculated and stored in an output file. Files are opened and closed at times
specified by the control program.

The data is also returned to the control program viditthguffer task for
distribution to the other radar tasks.

The processing of the raw data requires a significant amount of CPU time ar
for this reason the calculations are performed during the next integration
period. Consequently the fitted data lags one beam behind the raw data.

The program produces two output files, one has the suffix FIT and contains the

data, the other has the suffix INX and contains an index to the data. The
filenames are of the form:

yymmdds=IT
yymmddgNX
Where:
yy year XXyy
mm month.
dd day
hh hour
S station id e.g. g

The *“-e " option specifies the name of the error log task that the task reports
errors and warnings to. By default errors are reported to the task registered
under the name/érrlog .

[]

32

fitacf

The optionahamestring is the name used to register the task with the

Operating System. When a control program wishes to communicate with
fitacf it must use this name. By default the task is registered under the ngme
“ffitacf .

The “f " option specifies the name of tfie_buffer task that the
processed data will be sent to.

33

Syntax

Options

Description

fit_buffer

fit_buffer | nameg

name register the task under this name with the Operating
System.
The taskit_buffer acts as a temporary storage buffer for the data

produced byitacf

Both the raw ACFs and the fitted data are distributed to the other tasks by th
control program which must get the processed datafitani . However

fitacf processes the last block of data during the current integration periodl
and the data must be stored until the control program is ready to receive it. The
fit_buffer task receives the block of data fréitacf ~ and passes it to the
control program when required.

D

The optional name string specifies the name used to register the task with the
operating system. When anottigacf wishes to locate the buffer it must
use this name. By default the task is registered under the name
“ffit_buffer

34

Syntax

Options

Description

raw_write

raw_write [-e err_name [-t threshold[namé

-e err_name send errors to the task registered under the name
err_name

-t threshold reject data with lag-zero power less than
threshold NOISE/2.

name register the task under this name with the Operating
System.

The taskraw_write receives the raw ACF data from the control program,
compresses it, and stores it on disk. Files are opened and closed at times
specified by the control program.

The data is compressed from 32 bit integers into 16-bit pseudo floating point
numbers. The compression does result in a loss of some accuracy as the low
order bits of the original integers are lost, however the compression does give a
50% reduction in the output file size.

The filenames are of the form:

yymmddDAT
Where:
yy yearXXyy
mm month.
dd day
hh hour
S atation id e.g. g

By specifying the “t " option a threshold value can be applied to the lag-zero
power. Data below this threshold is not stored in the file providing a further
reduction in the size of the output file. The threshold function is defined as:

threshold NOISE/2.
Data with lag-zero power less than the result of the above sum is rejected.
The "“-e " option specifies the name of the error log task that the task reports

errors and warnings to. By default errors are sent to the task registered under
the name ferrlog ".

35

raw_write

The optionahamestring is the name used to register the task with the
Operating System. When a control program wishes to communicate with

raw_write it must use this name. By default the task is registered under th
name fraw_write .

1%

36

Syntax

Options

Description

scheduler

schedule [-t] [-h] [-d] [-V] [-n nameg
sched_file

-t reload the schedule every ten minutes.

-h reload the schedule every hour.

-d reload the schedule every day.

-V operate in verbose mode.

-n hame register the task under this name with the Operating
System.

sched _file the filename of the schedule file to load.

The taskschedule is responsible for scheduling when control programs are
started and stopped. The task reads in a schedule file and extracts from thig
names and start times for the programs to run.

A schedule file is a simple text file containing the start times and command
line of the programs to run:

test.sched

default /radops/usr/bin/normal_scan

1996 3 19 14 50 /radops/usr/bin/sdcusp_2200
1996 3 19 15 00 /radops/usr/bin/normal_scan
1996 3 19 15 30 /radops/usr/bin/sdcusp_2200
1996 3 19 15 40 /radops/usr/bin/normal_scan

Each line in the schedule file corresponds to a command to execute. Lines
beginning with a #” are treated as comments and are ignored.

If a line begins with the wordefault , then the rest of the line is treated as
the command to execute if no other program is due to start. A schedule file
must include a default program.

Other lines are interpreted as :
<year> < month>< day> < hour> < minute> < command line

The time is specified in UTC format. After the time has been read, the
remainder of the line is treated as the command line to execute.

The scheduler scans through the file and loads and runs the appropriate
control program. Every thirty seconds the scheduler checks through the load
schedule, if the start time of a new program has expired then the current
program is stopped and the new one started.

5 the

37

scheduler

Periodically the scheduler reloads and re-processes the schedule file. This
allows any alterations or additions to the schedule to be correctly identified a
acted upon. By default the schedule file is reloaded every hour, however this
can be changed by using one of the option flags;” Will reload the schedule
every 10 minutes,-h " will reload it every hour, and-t " will reload it once a
day.

When the scheduler is started with the * flag it operates in verbose mode
displaying currently running schedule every thirty seconds. This is useful in
checking that the schedule file has been correctly interpreted.

The “n " option specifies the name used to register the task with the operatirn
system. When another task wishes to locate the scheduler it must use this n
By default the task is registered under the nafeehedule .

The scheduler will record all of its actions in a special log file stored in the
directory ‘Yradops/scdlogs ". Each day a new log file is created with the
filenamescdlog .ddd, wheredddis the day of the year.

g
ame.

38

Display Tasks

39

Syntax

Options

Description

display

display [-a] rangd] [[-p] [-v] [-W]
[scale]] [-m] [-e echo_name]

-a range plot the calculated ACF at the range gate given by
range

-p scale plot the lambda power with a colour scale ranging
between 0 andsealedB.

-v scale plot the velocity with a colour scale of ranggcale
ms™.

-w scale plot the lambda spectral width with a colour scale
ranging between 0 andsealems™.

-m plot the ACF with the highest lag-zero power.

-e echo_name receive data from the versione¢ho_data
registered under the nareeho_name.

The taslkdisplay is a client ofecho_data that displays a graphical
representation of the radar data on the console.

The program provides a crude graphical display @NX or X terminal of the
raw data generated by a control program and the fitted data produced by
fitacf

When the program is running it will display the current transmitted frequency
the noise level, the range separation, first range gate, time, and beam numb
Depending on the display mode selected it will also plot the raw ACF at the
specified range, the raw ACF with the largest power, or, the fitted velocity, th
lambda power, or lambda width for all ranges and beams.

11

The fitted data displays have range gates running horizontally across the screen

and beam number running vertically down the screen. QN4 terminal

radar data is plotted as coloured squares according to the colour bar shown
the top of the screen. On an X terminal the bar consists of the numbers from
9. The maximum value of the bar is displayed at the top right of the screen.
For lambda power and spectral width the bar corresponds to values between
zero and this value, for velocity it corresponds to values between plus and

At
0-

minus this value. The maximum value of the bar can be altered by pressing the

up and down arrow keys, or by typing in the number and pressing return.

The ACF display shows the raw lag O power for all ranges at the top of the
screen. Below that is the ACF plot for the specified range. The selected rang
numbered from zero can be altered by using the up and down arrow keys or
typing in the desired range and pressing return. Pressitgyill plot the

range with the maximum lag-0 power. The selected range is shown in the to
right of the screen.

(1]

40

display

The selected mode can be changed by pressing the left and right arrow keys|
pressing &” for ACF, “v” for velocity display, p” for lambda power orw’
for lambda width. The program starts in the velocity mode.

The program can be stopped at any time by pres€itidy < <c> or by typing

q.

The command line options control which mode the display task is started in;
a” displays the ACF at the specified rangg * displays the lambda power, “-
w” the lambda width, and-¥ " shows the velocity. The optional scale value
sets the limits of the colour scale. Then” option displays the ACF with the
largest lag zero power.

The “e " option specifies the name of the echo_data task to connect to. By
default the task will connect to the program registered under the name
“lecho_data .

, Or

41

Syntax

Options

fitdisp

fitdisp [-p] [-w] [-v] [-a] [t
low_powef[-m max_val[consolé

-p plot lambda power.

-W plot spectral width.

-V plot velocity.

-q ignore the quality flag in the data.

-t low_power set the threshold of the lag zero power to plot.

-m max_val set the limits of the colour scalentax_val

-e echo_namereceive data from the versione¢ho_data
registered under the nareeho_name.

console display the output on this graphics console.

The tasKitdisp receives data froracho_data and produces a real-time
plot on a QNX machine running tigbuf graphics driver. The plot is a
geographically accurate view of the fitted data producefitdmyf . The plot
has a number of overlays including the outline of the continents, the field of
views of the other Radars and a set of user defined text labels.

The data plotted is selected by the command line options; selestiiiglbts
velocity, “-p ” plots lambda power, andw” plots spectral width. By default
velocity is plotted. The maximum limits of the colour scale are set by using th
“-m” flag.

1]

Usually the task checks the fitted data and only plots values for which the
quality flag has been set, this can be over-ridden by usingdhelag. The

“-t " option applies a limiting threshold to the lag-zero power so that data with
power below the threshold is ignored.

The “e " option specifies the name of the echo_data task to connect to. By
default the task registered under the nafeeHo_data " is used.

The user defined labels are stored in a file pointed to by the environment
variableSD_OVERLAYusually this is set to

“/radops/tables/overlay ". The overlays are defined as a simple spac
separated text file with one label per line:

A1%

Example of an overlay file
-90.0 0.0 South Pole
-98.045.0 AGO 1

90.0.0 0.0 North Pole

Lines beginning with a#’ are treated as comments and ignored. The first two
entries on a line are the latitude and longitude of the label, the remainder of
the line is taken to be the text label.

42

fitdisp

The last argument of the command line is the console number on which the
plot will be displayed. If this argument is omitted then the plot will appear on
console eight (8).

43

Syntax

Options

Description

qltp

gltp [-e echo_namk[console]

-e echo_namereceive data from the versioneého_data
registered under the nareeho_name.
console display the output plot on this graphics console.

The taskgltp receives data froracho_data and produces a summary plot
that can be displayed on a QNMXachine running thgbuf graphics

manager. The data can be plotted in real time or taken from a summary file
produced byd summary .

Plots are produced on console number eight (8) if no arguments are given o
on console number specified bgahsole

The “e " option specifies the name of tkeho_data task to connect to. By
default the task connects to the program registered under the name
“lecho_data ”

The summaries produced consist of a range-time plot of a single radar beam
showing two of the parameters stored in the data producttzdfy

The task uses a menu system that can be controlled by either the mouse or the

cursor keys, moving the mouse over an entry in the menu will hi-light it.
Individual entries in the menu can be stepped through and hi-lighted by
pressing the up and down cursor keys. Pressing return or clicking a mouse
button over a hi-lighted entry will select it.

Some entries in the menu are switches that can be either on of off, these are
shown in green when they are off, and white when they are on. Others are p
buttons that trigger other operations such as loading and saving files, these
shown in yellow. Text fields where numbers and words can be typed in are
shown in white with a blue background. Selecting one of these items will cleg
the text field and a new entry can be typed in; pressing enter or escape will
store the new value. Number fields can also be altered by clicking on the
yellow arrow buttons on either side of the field. The left pointing arrow will
decrement the number, the right pointing arrow will increment it.

The task uses three sets of menus. They can be selected by clicking on the
arrow buttons in the menu box at the bottom left of the screen; each menu
relates to different parameters of the plot. The first shows the most commonl
changed parameters such as the frame length and which item of data from
fitacf to plot.

The plot window is divided into two and can display two different items of dat
fromfitacf . The selected items are hi-lighted in white in the two lists at the
top of the menu.

ush
are

=

44

qltp

The scale to use for the two parameters is selected beneath them. The divisi
marks of the key are set usingcale step ". Values of the parameter that

lie outside the range of the scale are plotted in the appropriate colour for the
limit of that scale.

The “Threshold parameter "and the cut-off tevel ” are selected in the
right hand column; range/beam points with values of the threshold paramete
below the cut-off level will not be plotted.

The frame length is set in hours and minutes, up to 24 hours. The interval
between division lines on the plot is set usifgeme step ". The sub
divisions along the bottom of the plot are set usifkgame tick "~

The start and end ranges of the plot are set in kilometers from the radar site

The plot consists of a range-time plot for a single beam selected &sagi*

The values of the two parameters selected fromitdef f data are plotted for
this beam. If Beand is set to -1 then all the beams will be plotted. TBedm
persistence " sets the width of the bar to plot for a beam. Usually this is se
to sixteen as all sixteen beams must be scanned before a new bar will be
plotted.

The second menu shows more general parameters such as the noise and
frequency scales. The entridise max " is uses as the upper level of the
noise scale and values are assumed to lie between zero and this value.

Usually data will not be plotted of the ground scatter flag is set or the quality
flag is not set. This can be changed by selectigigore Quality Flag "
or “Ignore Ground Scatter

The frequency scale is divided into eight bins, frequencies below the value se
for a specific bin will be plotted in the colour selected for that bin. The colour
values range from -1 to 511, with -1 corresponding to black. Colour values le
than or equal to 255 correspond to the first colour scale, and values greater
255 to the second.

The “Station Name " string is the title used when labeling the plot.
The final menu controls the offline plotting of files producedstysummary .

The “Starttime " is the offset from the start of the image file to begin
plotting data.

Clicking on* Plot File " will bring up a filer window showing the currently
available summary files. Selecting a file to plot will prompt the user to switch
to the graphics console. At the end of each frame of data the program will

=

—

5S
han

pause until the user presses a key and then the next full frame of data is plofted

until the end of the file is reached.

The four buttons at the bottom of all of the menus are used for loading and
saving a set of options, entering the real time plot mode and for leaving the
program.

45

qltp

Clicking on “Load” or “Save” will open a file selection window which is

divided into two parts. The top part shows the full filename of the current
configuration file and the bottom shows the contents of the directory where th
file resides.

Selecting a file in the bottom part of the window using either the mouse or th
cursor keys will change the file name in the top window. Text can be typed
directly into the top window and will appear at the current text cursor which
can be moved using the left and right cursor keys.

Pressing return will accept the file name in the top window as the name of th
file to either load or save. If this name is a directory then the bottom half of th
window will change to show the contents of the new directory.

Pressing the escape key will abort the load and save operation.

Clicking on the Run” button will cause the program to enter the real time plot]
mode. The user is prompted to change to the graphics console to view the pl

The plot mode is stopped by pressing a key on the console that the menu is
displayed on.

The locations of files and the graphics mode usegltpy are all stored in the
header fradops/src/qltp/config.h

/* configuration file for gltp */

#define QLTP_CONFIG_PATH “/radops/scripts"
#define QLTP_CONFIG_NAME "qgltp.config"
#define QLTP_IMAGE_PATH "/summary"
#define QLTP_IMAGE_NAME "test.smr"

The directory path and initial filename for thip configuration file is
specified withQLTP_CONFIG_PATHNdQLTP_CONFIG_NAMBNhen a
configuration file is loaded or saved for the first time, the file window will be
opened using this directory and filename.

The initial name and location of the summary file used for off-line plotting is
defined byQLTP_IMAGE_PATHandQLTP_IMAGE_NAME

11%

e

46

Summary Data Tasks

47

Syntax

Options

Description

compress

compress [-d echo_namf-e errlog] [-1] [
VI [-w] [-y] [-X] [-p low_powet
[-h hourl [-m minutgd [-b bmnun
[namé

-d echo_name attaches to the version etho_data registered
under the namecho_name

-e err_name sends errors to the task registered under the namg
err_name

-l record lambda power data.

-V record velocity data.

-W record spectral width data.

-y use the low compression rate.

-X use the high compression rate.

-p pwr reject data points with lambda-0 power less tan

-h set the number of hours of data recorded in a file.

-m set the number of minutes of data recorded in a filg.

-b bmnum record summary information about bebmnumin
memory.

name register the task under this name with the Operating
System.

The taskcompress is a client olecho_data that produces highly
compressed summary files, call@dlour MapFiles (CMP), from the data
generated bfitacf

The program can be run in either high or low compression modes. In the hig
compression mode, set by tha& “ command line option, the program records
data as an 8-bit number that is an index in the stan8apkrDARN colour
table. Files produced in this mode can be used to produce animation’s of the
observed scatter or time series plots of each radar beam much like those
produced byltp andfitdisp . In the low compression mode set by thg’“-
command line option, the data is recorded as the full 64 bit floating point
numbers.

The data files produced can contain the lambda power, spectral width and
velocity parameters or any combination of the three. The parameters are
selected on the command line using tHe™ “-v ", or “-w” options.

Only data with the quality flag set is recorded in the file and a threshold limit
defined by the “p ” command line option, is applied to the lag zero power, dat
with power below this limit is ignored.

Unlike other summary tasks, which open and close files following requests
from the control prograntompress records files of a fixed length specified

=y

D

48

compress

by the “h ” and “-m” command line options. Theli ” option sets the number
of hours to record in a file, and thex” option the number of minutes.

The task also maintains a buffer in memory that is used to record information
about a single beam specified by the * option. When the task receives a
message from thetrig task, the buffer is written to disk in the file
“/cmp/delta "

The *“-d " option selects which version etho_data the task should attach

to by default the task registered under the naieeh®_data " is used. The

“-e " option selects which version of the error log errors should be reported tq
by default errors are sent to the task registered under the remay* ”

The optionahamestring specifies the name used to register the task with the
operating system. When a task wishes to locatepress it must use this
name. By default the task is registered under the n&ompress ”

49

Syntax

Options

Description

sd_summary

sd_summary [-d echo_namf]-e errname [-
a beamAl[-b beamB [-p pwi] [-n
nameg

-d echo_name attaches to the version etho_data registered
under the namecho_name
-e err_name sends errors to the task registered under the namg

err_name

-a beamA record information abolteamAin the file.

-b beamB record information abouteamBin the file.

-p pwr reject data points with lambda-0 power less tan

-n name register the task under this name with the Operating
System.

The tasksd_summary is a client ofecho_data that produces summary files
from data produced bijtacf

The program records in a text file the values of lambda power, lambda width
and velocity for one or two beams per scan.

Only data with the quality flag set is recorded in the file and a threshold limit
defined by the“p ” command line option, is applied to the lag zero power, daf
with power below this limit is ignored.

By default the program records the data from beam eight (8) of the radar
however the two command line optiona ” and “-b ” can be used to select
other beams. To record a single beam of data usealeoption on its own, to
record two beams, use botla™ and “b .

The *“-d " option selects which version etho_data the task should attach
to, by default the task registered under the naeeht_data ”is used. The
“-e " option selects which version of the error log errors should be reported tq
by default errors are reported to the task registered under the name
“lerrlog "

The optional name string specifies the name used to register the task with th
operating system. When a control program wishes to lecatsummary it

must use this name. By default the task is registered under the name
“/sd_summary .

D

50

Syntax

Options

Description

viptm

viptm [(a echo_namf-e errlog]

-a echo_name attaches to the version etho_data registered
under the namecho_name

-e err_name sends errors to the task registered under the namg
err_name

The taskviptm is a program for the estimation of two-dimensional velocity
vectors on the basis of the line-of-sight velocity data from a single radar.

It consists of a set of C subroutines and look-up files containing the coordinate
data for the particular radar. The task runs concurrentlyfitagf ; it
receives velocity data from each scan and outputs the velocity vector (in
geomagnetic coordinates) to a file. The file is the basis for the generation of the
daily velocity clock-dial plot and is also the source for the transfer of the key
parameter data to CDHF.

The logic ofviptm is based on the assumption of quasi-uniformity of the
convection along a contour of constant magnetic latitude. The set of beam
directions then samples the velocity at a given latitude from a variety of angles
and the full two-dimensional vector can be estimated in an optimal sense be
fitting a cosine dependence to the variation of the line-of-sight velocity with the
look angle. The quality of the fitting varies. This is flagged by a quality index,
gflag, defined by:

gflag=2.5*(gn+qr)

Where:

gr=(1-(1/11)*(hp-5)
gr=(1-(1/55)*(55+msg)

Wherenp is the number of points contributing to the fit antis the root-
mean-square error on the fit. Normatjffag varies from (0) (the best) to (4) for
acceptable fits.

Less satisfactory fits may also be listed, vgjftag values that range from (5) to
(t). In this case the lower limit forp (5) and/or the limit for dropping points
(1/3 of the total number on the contour) has been reached but the fit may be
unsatisfactory for the following reasons:

gflag=5 unable to meat criterion on rms (55 m/s).

gflag=6 fit is not superior to fit that assumes constant velocjty

gflag=7 more than half the points are from beams >10. (GH
Only).

51

viptm

The-a option selects which version e€ho_data the task should attach to,
by default the task registered under the nafeetfo_data " is used. Thee
option selects which version of the error log errors should be reported to, by
default errors are reported to the task registered under the rfembeg’ ”.

52

Internet Access Software

53

client

Syntax
client host port
Options
host the name of the remote host to attach to.
port the TCP/IP port number of the server task to attach to
on the remote host.
Description

Theclient task is a simple diagnostic client of erver task. The source
code can be used as a starting point for more sophisticated clients.

The task connects to tiserver task running on the specified host and port
number and waits to receive blocks of data. When a block is received, the task

prints out the ranges for which data is available and the velocities for those
ranges.

54

Syntax

Options

Description

echo_datalP

echo_datalP [-s stime] [-t ttime] [-n
echo_namkg-e err_namé host port

-s stime the time-out period for a single task.

-t ttime the time-out period for all the tasks.

-n echo_name register the task under this name with the Operating
System.

-e err_name sends errors to the task registered under the namg
err_name

host the name of the remote host to attach to.

port the TCP/IP port number of the server task to attach to
on the remote host.

The taskecho_datalP is a version oécho_data that receives its data
from a remote server task using TCP/IP protocols. The data received is a sul
set of that produced Hitacf . Tasks that register themselves will

automatically receive the next block of data as it is received from the server.

When a task wishes to register itself it sends a message containing a text st
to associate with it. The tasikcho_datalP adds the process igid) of the
registering task and the string to a table stored in memory.

Each timeecho_datalP receives a block of data from the server it

transforms it into the standard message types used by the Radar software and

attempts to send it in turn to each task recorded in the table. If a task has di
thenecho_datalP will remove that entry from the table and move on to the
next entry in the list.

If the task does not reply to the message within the time allocated for a singl
task as set by thes ” option, thenecho_datalP will time out and move

onto the next task in the table. If tteho_datalP cannot send the message
to all the tasks within the total allocated time as set by-thé& 6ption, then it

will not send to the remaining tasks in the list. When the next block of data i
received, the task will try sending to all the tasks again. By default, the time-
out period for a single task is one (1) second, and the total time-out period is
five (5) seconds.

The “n " option specifies the name used to register the task with the operatirn
system. When another task wishes to loeateo_datalP it must use this
name. By default the task is registered under the n&uohd datalP .

The “e " option specifies the name of the error log that the task reports error,
and warnings to. By default errors are sent to the task registered under the
name‘/errlog "

=
T

ing

ed

1%

[2)

55

Syntax

Options

Description

server

server [-n name] [-d echo_data] [-e
errlog] [port]

-n name register the task under this name with the Operating
System.

-d echo_name attaches to the version etho_data registered
under the namecho_name

-e err_name sends errors to the task registered under the namg
err_name

port the TCP/IP port number of the to attach to on the Ipcal
host.

Theserver task allows Radar data to be transmitted over the Internet in real

time. The task receives data produceditagf = fromecho_data and
passes it on to client tasks running on remote systems using the TCP/IP
protocol.

The data transmitted consists of the radar parameter block and the lambda
power, spectral width, and velocity components. A 3dB Threshold is applied
the lag zero power and data below this threshold is ignored.

When runningserver listens on the specified port for connection requests

(0]

from other programs. When a client is accepted, radar data will be compressed

and transmitted to it after each integration period.

There is an upper limit of sixteen simultaneous clients that can be connected to

the server at any one time.

The *“-d " option selects which version etho_data the task should attach
to by default the task registered under the naieehb_data " is used. The

“-e " option selects which version of the error log errors should be reported tg,

by default errors are sent to the task registered under the vemhay* ”.

The optional name string specifies the name used to register the task with th
operating system. When a task wishes to losateer it must use this name.
By default the task is registered under the nada¢d' server ".

56

Off-line Support Software

57

Syntax

Options

close file

close_file

task_namg

\14

task_name

send the close messagddek name

Theclose_file task sends a close message to the specified task forcing it

close any open files.

58

Syntax

Options

cmp_fit

cmp_fit [[-v] [-w] [-y] [-X] [-p
low_powet [-b bmnun fit_file

-l store lambda power in the output file.

-V store velocity in the output file.

-W store spectral width in the output file.

-y use the low compression format.

-X use the high compression format.

-p low_power apply a threshold dbw_powerto the lag-zero power
-b bmnum record only information about beam numbernum
fit_file the filename of the fit file to read.

Thecmp_fit task reads the fit filét_file, and produces @olour M ap
(CMP) file on the standard outpigtdout

The program can be run in either high or low compression modes. In the hig
compression mode, set by th& command line option, the program
transforms data into an 8-bit number that is an index in the standard
SuperDARN colour table. Files produced in this mode can be used to produc
animation’s of the observed scatter or time series plots of each radar beam
much like those produced lojtp andfitdisp . In the low compression
mode set by the ¥ command line option, the data is recorded as the full 64
bit floating point numbers.

The data files produced can contain the lambda power, spectral width and
velocity parameters or any combination of the three. The parameters are

selected on the command line using tHe™ “-v ", or “-w” options.

Only data with the quality flag set is recorded in the file and a threshold limit
defined by the “p ” command line option, is applied to the lag zero power, datf
with power below this limit is ignored.

By specifying the “b ” option an output file containing data for only the
specified bearbmnum can be produced.

>

[1)]

D

59

Syntax

Options

ctrig

ctrig [cmp_namp

cmp_name send the trigger message to toenpress task
registered under the naramp_name

Thectrig task sends a message tod¢benpress task causing it to write the
last few hours of data in a file. The file is callddtip/delta " and contains
data for a single beam.

The file produced can be used to provide a quick “snap-shot” of the radar
scatter without having to wait until the end of the day for the full summary da
set.

The optionakmp_namestring specifies the name of tbempress task to
send the signal to. By default the task registered under the name
“/compress " is used.

[a

60

Syntax

Options

plot_cmp

plot_ cmp [-p] [-v] [-wW] [-f] [-C consolé
[-[d delay cmp_file

-p plot lambda power data.

-V plot velocity data.

-W plot spectral width data.

-f apply a simple filter to smooth the data.

-c console plot the data on graphics console specifieddnysole
-d delay specify the delay in milliseconds between frames.
cmp_file the name of the cmp file to read.

The taskplot_ cmp plots the contents of @olour M ap file (CMP) as a

simple animation. The plot has a number of overlays including the outline of
the continents, the field of views of the other Radars and a set of user define
text labels.

The task uses the graphics console drgmif and the console to plot on is
specified using the-t ” command line option. By default graphics console
eight (8) is used.

The parameter that the program will plot, either lambda power, velocity or
spectral width, can be set using thp *, “-v ", or “-w” command line option.
By default velocity is plotted.

The time in milliseconds between successive frames of the animation can be
using the “d " option.

61

set

Syntax

Options

tplot_cmp

tplot_cmp [-b bmnunj [-c consolé¢ [-s starf]
[-e extent cmp_file

-b bmnum plot data for beam number bmnum.

-c console plot the data on graphics console specifieddnysole

-s start start the plot at the time in hours and minutes given by
start, expressed abh:mm, wherehh is the number of
hours, andnmis the number of minutes.

-e extent plot the period of time of lengtixtent expressed as
hh:mm, wherehh is the number of hours, amaimis
the number of minutes

cmp_file the name of the cmp file to read.

The taskiplot_ cmp plots the contents of@olour M ap file (CMP) as a time
series plot on a graphics console.

The task uses the graphics console drjmif and the console to plot on is
specified using the-t " command line option. By default graphics console
eight (8) is used.

The program will plot a 24 hour period starting at the first record encountered
in the input file. The s ”, and “-e " options can be used to override the start
time and the length of time to plot. The times should be expressed in the form:

hh: mm

Where:
hh hours
mm minutes.

The beam number to be plotted can be set usingpthaption, by default beam
eight (8) is plotted.

62

Diagnostic Utilities

63

a_d_test

Syntax
a dtest [a d namg
Options
a_d_name test the version of a_d_drive registered under the name
a_d_name

The taska_d_test is a simple diagnostic task for the Analogue to Digital
Converter (ADC) drivea_d_drive

It performs some simple software triggered A/D conversions and prints the
results on the display.

The optionab_d_name string specifies the name of thed_drive task to
test. By default the task registered under the named“/drive " is tested.

64

test_dio

Syntax

test_dio [dio_namé

Options

dio_name test the version afadops_dio registered under the
namedio_name

The taskest _dio is a very simple diagnostic program for the DIO driver
radops_dio.

The task allows the user to send commands directgdops_dio . When
the program is started it displays a menu of the commands available:

. reset_xt

. send_tsg

. set_beam

. set_freq

. set_gain

. download timing sequence
. verify_id

. set antenna mode

. set test mode

10. get status

11. set filter mode

99. EXIT

enter the function number :

O©CO~NOOOITAWNE

The user types the number of the function to be performed, or 99 to exit the
program, and pressegnter> . Depending on the command chosen they will
then be prompted for another input.

Once the command has been executed the a status code is printed on the
console. If the command was successful this will be zero (0).

The optionadio_namestring specifies the name of tredops_dio task to
test. By default the task registered under the ndraddps_dio " is used.

65

Syntax

Options

test_echo

test_echo [-e echo_namkg|-s statior] fit_file

-eecho_name send data to the version of echo_data registered upder
the nameecho_name

-s station Change the Radar station identifier letter stored in|the
Radar parameter block spation
fit_file The filename of the fit file to read.

The taskest_echo allowsecho_data and its client tasks to be tested.

The program reads in data records from a fit file generatditblofy and
passes them techo_data . When the end of the file is reached the program
will start at the beginning again in a continuous loop.

The “s " option can be used to simulate data from a particular radar site. Th
single letter radar identifier stored in the parameter block is subsituted for thé
one supplied on the command line.

The “e " option specifies which version etho_data to send data to. By
default data will be sent to the task registered under the nacte” data .

D

174

66

test_gbuf

Syntax

test_gbuf [consolé

Options

| console plot graphics on the console numisensole

The taskgbuf_test is a very simple diagnostic program for the graphics
console drivegbuf.

The task draws some simple graphics on the screen.

The optionaktonsolenumber specifies the console on which the test should be
performed. By default console number eight (8) is used.

67

Software Version Control

68

Syntax

Options

Description

control_mod

control_mod filename

filename the filename of the module version file.

The taskcontrol_mod is a utility used for checking the version numbers in
the various modules in the Radar software source code.

It compares th&®evisionControl System RCS), information stored in each
module against a master list stored in theffimame Each module must have
the RCS keyword$Revision$ " somewhere in the file:

/* module.c

/* Insert RCS revision keyword here:

$Revision$
g/

/* Program starts here */

The master list, usually called@dntrol.info ", is a list of modules together
with the expected revision number:

$Revision$
#

module.c
main.c

[l

Lines starting with a#’ are treated as comments and ignored. Each line
contains the name of the module followed by a space or tab and then the
expected revision number.

The master list should also be maintained under RCS and include the
“$Revision$ " keyword, this is used to generate a master version number fq
the program.

69

—

control_mod

The task scans the list and checks for the existence of each module and that the
revision numbers agree. If a discrepancy is found the program will stop and
report the error.

When all the modules have been checked, the task produces a master version
header on stdout:

[*version.h*/

#define VERSION x.y
#define VSTRING “ x. y”
#define VMAJOR X
#define VMINOR vy

The output can be redirected to a file and included in the source code to access
the version numbers.

70

Syntax

Options

Description

logo

logo [-f] [-] [-d time]

-f fade the logo using a special effect.

-t run in text mode only.

-d time wait the specified number of seconds before returnjng
control to the user.

The tasdogo is a utility for displaying the Radar software title page, the radd
station, and the master version number of the software. The master version
number is defined in the header
“/radops/include/radops_version.h ?

The “f " command line option will adds a special effect that fades the title
page in. The-d " option sets the length of time in seconds that the title page
displayed.

To display the version information in text mode only use thé ‘dption.

A

71

=

The Control Library

72

Data Structures

73

Syntax

Description

radops_parms

#include

“radops.h”

The structuregadops_parms
following members.

contains the radar parameters, it has the

char MAJOR,MINOR;
short int NPARM,;

short int ST_ID;

short int YEAR;

short int MONTH;

short int DAY;

short int HOUR;

short int MINUT;

short int SEC;

short int TXPOW;

short int NAVE;

short int ATTEN;

short int LAGFR;

short int SMSEP;

short int ERCOD;

short int AGC_STAT;
short int LOPWR_STAT;
short int NBAUD;

long int NOISE;

long int radops_sys_resL;
short int radops_sys_resS;
short int RXRISE;

short int INTT;

short int TXPL;

short int MPINC;

short int MPPUL;

short int MPLGS;
short int NRANG;
short int FRANG;
short int RSEP;
short int BMNUM,;
short int XCF;
short int TFREQ;
short int SCAN;
long int MXPWR;
long int LVMAX;
long int usr_resL1;
long int usr_resL2;
short int CP;

short int usr_resS1;
short int usr_resS2;
short int usr_resS3;

revision numbers.

total number of 16 bit words in the
block.

station ID.

year = 19XX

month.

day.

hour.

minute.

second.

transmitted power (kKW).

number of times pulse was transmitte
attenuation setting of receiver.

the lag to the first range (microsecs.).
the sample separation (microsecs.).
error flag.

AGC status word.

low power status word.

number of elements in a pulse code.
noise level.

reserved for future use.

reserved for future use.

receiver rise time.

integration period (secs.).

the pulse length (microsecs.).

the basic lag separation (microsecs.).
the number of pulses in the pulse
pattern.

the number of lags in the pulse patter
the number of range gates.

distance to the first range (km.).
range separation (km.).

beam number.

cross-correlation flag.

transmitted frequency (kHz).

scan mode flag.

maximum power allowed.

maximum noise allowed.

user defined long word 1.

user defined long word 2.

Program ID.

user defined short word 1.
user defined short word 2.
user defined short word 3.

>

74

radops_parms

The user can set the first range gate by specifyRgNGn kilometers. The
libraries then use this value to set the lag to the first range in microseconds.

Similarly the user sets the range separation by speciB8tPin kilometers.
The libraries then use this value to calculBSEHRNn microseconds.

During the gain setting routine, the libraries will attempt to add enough
attenuation so that the maximum reflected power is lesSMKEWRT this is
not possible the error codERCODis set to indicate the receiver is over-
loaded.

During the clear frequency search, the library routine will find the clearest
frequency in the range specified. The noise level determined for that frequen
will be stored in the parametBIOISE. If NOISE is greater thehVMAX the

error code will be set to indicate that no clear frequency could be found.

75

Syntax

Description

rawdata

#include “radops.h”

The structureawdata has the following members:

struct radops_parms PARMS; radar parameter block.

short int PULSE_PATTERN[PULSE_PAT_LEN]; transmitted pulse
pattern.

short int LAG_TABLE[2][LAG_TAB_LEN]; lag table.

char combf[COMBF_SIZE]; comment buffer.

long pwrO[MAX_RANGE]; lag-0 power.

long acfd[MAX_RANGE][LAG_TAB_LEN][2]; calculated raw ACF.

long xcfd[MAX_RANGE][LAG_TAB_LEN][2]; calculated raw XCF.

The valuePULSE_PAT_LENLAG_TAB_LEN COMBF_SIZEand
MAX_RANGEorrespond to:

PULSE_PAT_LEN 16
LAG_TAB_LEN 48
COMB_SIZE 80
MAX_RANGE 75

The number of lags in the pulse pattern is the true number of lags which are
present in the tableAG_TABLE It is NOT the value of the maximum lag. If

the maximum lag is 33 but only 22 of the 33 lags are actually calculated ther
MPLGSs 22.

76

Syntax

Description

fitdata

#include “fit_data.h”

The structurditdata has the following members:
struct radops_parms prms; radar parameter block.
struct range_data rng[MAX_RANGE] the fitted data.

The structuregange_data has the following members:

it.

short int gflg; the quality flag.

short int gsct; the ground scatter flag.

double p_0; the lag O power.

double p_|; the lambda power.

double p_s; the sigma power.

double w_l; the lambda width.

double w_s; the sigma width.

double v; the velocity.

double v_err; the velocity error.

double sdev_|; the standard deviation of the lambda
double sdev_s; the standard deviation of the sigma fif.
double sdev_phi; the standard deviation of the phase fif.

77

a_d drive.o

78

Syntax

Description

Returns

Errors

do_scan

#include “a_d_drive.h”
int do_scan(pid_t task_id,
int buffer,
int bytes,
int mode,
int channels);

Thedo_scan function sends a message toghe_drive task whose
process id isask_id requesting that an A/D scan should begin.

The transfer uses DMA buffer numbarfferwith zero being the first buffer.
The number of bytes to transferbigtes using between 1 and 4 channels as
specified bychannels If modeis equal to zero then the transfer is hardware
triggered, otherwise software triggering is used.

Returns zero (0) on success, or (-1) if an error occursaaier is set.

When an error occursaderr contains a value indicating the type of error that
occurred.

RADERR_SIGNAL_FAIL the time out signal could not be claimed.
The signalSIGUSR1is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL atimer could not be created. A timer is set
to trigger a signal after the required time
out period.

RADERR_MSG_FAIL the message was interrupted.

RADERR_TME_OUT the message timed out.

RADERR_AD_FAIL the taska_d_drive failed to complete
this command.

79

Syntax

Description

Returns

Errors

get_buf _adr

#include “a_d_drive.h”
void *get_buf_adr(pid_t task_id,
short int buffer);

Theget_buf_adr function sends a message tohe_drive task whose
process id igask_id requesting the address of the DMA buffer numbered
buffer.

Returns a pointer to the requested DMA buffer, MUL(L) if an error occurs
andraderr is set.

When an error occursaderr contains a value indicating the type of error that
occurred.

RADERR_SIGNAL_FAIL the time out signal could not be claimed.
The signalSIGUSR1is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL atimer could not be created. A timer is set
to trigger a signal after the required time
out period.

RADERR_MSG_FAIL the message was interrupted.

RADERR_TME_OUT the message timed out.

RADERR_ECHO_ERR thetaska_d drive failed to complete
this command.

80

Syntax

Description

Returns

Errors

get_buf num

#include “a_d_drive.h”
int get_buf num(pid_t task_id);

Theget_buf_num function sends a message todhe_drive task whose
process id isask_id requesting the number of DMA buffers the task has.

Returns the number of DMA buffers that thed_drive task has, or (-1) if
an error occurs anchderr is set.

When an error occursaderr contains a value indicating the type of error that
occurred.

RADERR_SIGNAL_FAIL the time out signal could not be claimed.
The signalSIGUSR1is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL a timer could not be created. A timer is set
to trigger a signal after the required time
out period.

RADERR_MSG_FAIL the message was interrupted.

RADERR_TME_OUT the message timed out.

RADERR_AD_FAIL the taska_d_drive failed to complete
this command.

81

Syntax

Description

Returns

Errors

get_buf size

#include “a_d_drive.h”
int get_buf_size(pid_t task id);

Theget_buf size function sends a message toghe_drive task
whose process id task_id requesting the size of the DMA buffers the task
has.

Returns the size in bytes of the DMA buffers thataheé drive task has, or
(-1) if an error occurs an@derr is set.

When an error occursaderr contains a value indicating the type of error that
occurred.

RADERR_SIGNAL_FAIL the time out signal could not be claimed.
The signalSIGUSR1is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL atimer could not be created. A timer is set
to trigger a signal after the required time
out period.

RADERR_MSG_FAIL the message was interrupted.

RADERR_TME_OUT the message timed out.

RADERR_AD_FAIL the taska_d_drive failed to complete
this command.

82

get_scan_reset

Syntax
#include “a_d_drive.h”
pid_t get_scan_reset(pid_t task _id);
Description
Theget_scan_reset function sends a message toshe drive task
whose process id task_id requesting the process jgid) of the interrupt
proxy.
Whenever a DMA transfer is completed the proxy is triggered allowing the
driver to detect the end of the transfer.
Returns
Returns the process id of the proxy on success, or (-1) if an error occurs an
raderr is set.
Errors

When an error occursaderr contains a value indicating the type of error that
occurred.

RADERR_SIGNAL_FAIL the time out signal could not be claimed.
The signalSIGUSR1is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL atimer could not be created. A timer is set
to trigger a signal after the required time
out period.

RADERR_MSG_FAIL the message was interrupted.

RADERR_TME_OUT the message timed out.

RADERR_ECHO_ERR thetaska_d drive failed to complete
this command.

83

Syntax

Description

Returns

Errors

get_scan_status

#include “a_d_drive.h”
int get_scan_status(pid_t task_id);

Theget_scan_status function sends a message toghe_drive task
whose process id task_id requesting the status of the last DMA transfer.

Returns SCAN_OK if the transfer was successful or SCAN_ERROR if the
transfer failed. If an error occurred then (-1) is returnedradelr is set.

When an error occursaderr contains a value indicating the type of error that
occurred.

RADERR_SIGNAL_FAIL the time out signal could not be claimed.
The signalSIGUSR1is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL A timer could not be created. A timer is set
to trigger a signal after the required time
out period.

RADERR_MSG_FAIL The message was interrupted.

RADERR_TME_OUT The message timed out.

RADERR_AD_FAIL The taska_d_drive failed to complete
this command.

84

Syntax

Description

Returns

Errors

scan_reset

#include “a_d_drive.h”
int scan_reset(pid_t task_id);

Thescan_reset function kicks the proxy attached to thed drive task
whose process id task_id This has the affect of resetting the task when a
DMA transfer fails.

Returns zero (0) on success, or (-1) if an error occursaaiedr is set.

When an error occursaderr contains a value indicating the type of error that
occurred.

RADERR_SIGNAL_FAIL the time out signal could not be claimed.
The signalSIGUSR1is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL atimer could not be created. A timer is set
to trigger a signal after the required time
out period.

RADERR_MSG_FAIL the message was interrupted.

RADERR_TME_OUT the message timed out.

RADERR_ECHO_ERR thetaska_d drive failed to complete
this command.

85

dio.o

86

Syntax

Description

Returns

Errors

init_xt_pid

#include “radops_dio.h”
int init_xt_pid(pid_t task_id);

Theinit_xt_pid function sends a message toth@ops_dio task
identified by the process t@sk_id resetting the DIO card and clearing the
timing sequence buffers.

Returns zero (0) on success, or (-1) if an error occursaaiedr is set

When an error occursaderr contains a value indicating the type of error that
occurred.

RADERR_SIGNAL_FAIL the time out signal could not be claimed.
The signalSIGUSR1is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL atimer could not be created. A timer is set
to trigger a signal after the required time
out period.

RADERR_MSG_FAIL the message was interrupted.

RADERR_TME_OUT the message timed out.

RADERR_DIO_FAIL the taskradops_dio failed to complete
this command.

87

Syntax

Description

Returns

Errors

send_fclr

#include “radops_dio.h”

int send_fclr(pid_t task_id,
unsigned char id,
short int frg_num,
short int *freq_table);

Thesend_flcr function sends a message toithdops_dio task
identified by the process tdsk_id telling it to perform a clear frequency
search using the pulse sequence stored in the laliffer

The sequence is transmitted at each frequency in the table pointed to by
frg_table The table hafgq_numelements.

Returns zero (0) on success, or (-1) if an error occursaaiedr is set

When an error occursaderr contains a value indicating the type of error that
occurred.

RADERR_SIGNAL_FAIL the time out signal could not be claimed.
The signalSIGUSR1is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL atimer could not be created. A timer is sgt
to trigger a signal after the required time
out period.

RADERR_MSG_FAIL the message was interrupted.

RADERR_TME_OUT the message timed out.

RADERR_DIO_FAIL the taskradops_dio failed to complete
this command.

88

Syntax

Description

Returns

Errors

send_tsg

#include “radops_dio.h”
int send_tsg(pid_t task_id,
unsigned char id);

Thesend_tsg function sends a message to thdops_dio task identified
by the process ithsk_id telling it to transmit the pulse sequence stored in the

bufferid.

Returns zero (0) on success, or (-1) if an error occursaaiedr is set

When an error occursaderr contains a value indicating the type of error that

occurred.

RADERR_SIGNAL_FAIL the time out signal could not be claimed.
The signalSIGUSR1is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL atimer could not be created. A timer is s
to trigger a signal after the required time
out period.

RADERR_MSG_FAIL the message was interrupted.

RADERR_TME_OUT the message timed out.

RADERR_DIO_FAIL the taskradops_dio failed to complete
this command.

89

Syntax

Description

Returns

Errors

send _tsg _no_stat

#include “radops_dio.h”
int send_tsg_no_stat(pid_t task _id,
unsigned char id);

Thesend_tsg_no_stat function sends a message to tadops_dio
task identified by the processtakk_id telling it to transmit the pulse
sequence stored in the buffdr The status information is not updated.

Returns zero (0) on success, or (-1) if an error occursaaiedr is set

When an error occursaderr contains a value indicating the type of error that
occurred.

RADERR_SIGNAL_FAIL the time out signal could not be claimed.
The signalSIGUSR1is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL atimer could not be created. A timer is set
to trigger a signal after the required time
out period.

RADERR_MSG_FAIL the message was interrupted.

RADERR_TME_OUT the message timed out.

RADERR_DIO_FAIL the taskradops_dio failed to complete
this command.

90

Syntax

Description

Returns

Errors

set_antenna_pid

#include “radops_dio.h”
int set_antenna_pid(short int anum,
pid_t task_id);

Theset_antenna_pid function sends a message to thdops_dio task
identified by the process tdsk _id setting the antenna number aoum

Returns zero (0) on success, or (-1) if an error occursaaiedr is set

When an error occursaderr contains a value indicating the type of error that
occurred.

RADERR_SIGNAL_FAIL the time out signal could not be claimed.
The signalSIGUSR1is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL atimer could not be created. A timer is sgt
to trigger a signal after the required time
out period.

RADERR_MSG_FAIL the message was interrupted.

RADERR_TME_OUT the message timed out.

RADERR_DIO_FAIL the taskradops_dio failed to complete
this command.

91

Syntax

Description

Returns

Errors

set _beam_pid

#include “radops_dio.h”
int set_beam_pid(unsigned char beam,
pid_t task_id);

Theset_beam_pid function sends a message to thdops_dio task
identified by the process tdsk_id setting the beam numberbeam

Returns zero (0) on success, or (-1) if an error occursaaiedr is set

When an error occursaderr contains a value indicating the type of error that
occurred.

RADERR_SIGNAL_FAIL the time out signal could not be claimed.
The signalSIGUSR1is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL atimer could not be created. A timer is sgt
to trigger a signal after the required time
out period.

RADERR_MSG_FAIL the message was interrupted.

RADERR_TME_OUT the message timed out.

RADERR_DIO_FAIL the taskradops_dio failed to complete
this command.

92

Syntax

Description

Returns

Errors

set_filter_pid

#include “radops_dio.h”
int set_filter_pid(unsigned char filter,
pid_t task_id);

Theset_filter_pid function sends a message to tadops_dio task
identified by the process tdsk_id setting the filter mode thilter.

Returns zero (0) on success, or (-1) if an error occursaaiedr is set

When an error occursaderr contains a value indicating the type of error that
occurred.

RADERR_SIGNAL_FAIL the time out signal could not be claimed.
The signalSIGUSR1is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL atimer could not be created. A timer is sgt
to trigger a signal after the required time
out period.

RADERR_MSG_FAIL the message was interrupted.

RADERR_TME_OUT the message timed out.

RADERR_DIO_FAIL the taskradops_dio failed to complete
this command.

93

Syntax

Description

Returns

Errors

set freq_pid

#include “radops_dio.h”
int set_freq_pid(short int freq,
pid_t task_id);

Theset_freq_pid function sends a message to thdops_dio task
identified by the process tdsk_id setting the frequency foeq.

Returns zero (0) on success, or (-1) if an error occursaaiedr is set

When an error occursaderr contains a value indicating the type of error that
occurred.

RADERR_SIGNAL_FAIL the time out signal could not be claimed.
The signalSIGUSR1is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL atimer could not be created. A timer is sgt
to trigger a signal after the required time
out period.

RADERR_MSG_FAIL the message was interrupted.

RADERR_TME_OUT the message timed out.

RADERR_DIO_FAIL the taskradops_dio failed to complete
this command.

94

Syntax

Description

Returns

Errors

set _test_ mode pid

#include “radops_dio.h”

int set_test mode_pid(
unsigned char mode,
pid_t task_id);

Theset_test mode_pid function sends a message to tadops_dio
task identified by the processtakk_id switching the test mode on and off.

Settingmodeto zero (0) turns the test mode off, setting it to one (1), turns it o

Returns zero (0) on success, or (-1) if an error occursaaiedr is set

When an error occursaderr contains a value indicating the type of error that
occurred.

RADERR_SIGNAL_FAIL the time out signal could not be claimed.
The signalSIGUSR1is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL atimer could not be created. A timer is sgt
to trigger a signal after the required time
out period.

RADERR_MSG_FAIL the message was interrupted.

RADERR_TME_OUT the message timed out.

RADERR_DIO_FAIL the taskradops_dio failed to complete
this command.

95

-

Syntax

Description

Returns

Errors

set_tsg_pid

#include “radops_dio.h”

int set_tsg_pid(short int length,
unsigned char id,
char *code_byte,
char *rep_byte,
pid_t task_id);

Theset tsg_pid function sends a message totagops_dio task
identified by the process tdsk id downloading a timing sequence into the
bufferid. Each entry in the arragode_bytds the is a code to transmit, the
corresponding entry in the arregp_byteis the number of times to repeat the
code. Each array should lngthbytes long.

Returns zero (0) on success, or (-1) if an error occursaaiedr is set

When an error occursaderr contains a value indicating the type of error that
occurred.

RADERR_SIGNAL_FAIL the time out signal could not be claimed.
The signalSIGUSR1is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL atimer could not be created. A timer is set
to trigger a signal after the required time
out period.

RADERR_MSG_FAIL the message was interrupted.

RADERR_TME_OUT The message timed out.

RADERR_DIO_FAIL the taskradops_dio failed to complete
this command.

96

Syntax

Description

Returns

Errors

verify id_pid

#include “radops_dio.h”
int verify_id_pid(unsigned char id,
pid_t task_id);

Theverify_id_pid function sends a message to thdops_dio task
identified by the process tdsk_id verifying that the pulse sequence identified
by id exits.

Returns the length of the pulse sequence if it exists, zero (0) if it does not, o
1) if an error occurs angderr is set

When an error occursaderr contains a value indicating the type of error that
occurred.

RADERR_SIGNAL_FAIL the time out signal could not be claimed.
The signalSIGUSR1is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL atimer could not be created. A timer is set
to trigger a signal after the required time
out period.

RADERR_MSG_FAIL the message was interrupted.

RADERR_TME_OUT the message timed out.

RADERR_DIO_FAIL the taskradops_dio failed to complete
this command.

97

get_fit.o

98

Syntax

Description

Returns

Errors

get fit

#include “radops.h”
#include “fitdata.h”
#include “get fit.h”
int get_fit(char *fit_buf_name,
struct fitdata *fit_data);

Theget_fit function sends a message to fihebuffer task identified

by fit_buf_namerequesting the most recent block of fitted data.
If the data is available it is stored in the structure pointed fd hjata

If fit_buf_namds NULL then the default name offit_buffer " will be
used.

Returns the record number of the block of data returned. This corresponds tq

the total number of integration periods processefithgf since the last
was opened. If an error occurs (-1) is returnedraddrr is set.

When an error occursaderr contains a value indicating the type of error that

occurred.

file

RADERR_SIGNAL_FAIL the time out signal could not be claimed.
The signalSIGUSR1is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL atimer could not be created. A timer is s
to trigger a signal after the required time
out period.

RADERR_MSG_FAIL the message was interrupted.

RADERR_TME_OUT the message timed out.

RADERR_FBUF_ERR the taskfit_buffer failed to complete
this command.

99

get status.o

100

get_status

Syntax

#include “radops.h”

#include “get_status.h”

int get_status(struct rawdata*raw_data,
int clear);

Description
Theget_status function sends a message totheops_dio task
requesting the AGC and low power status words.

The values are stored in the raw data structure pointedrembydata If clear
is not equal to zero then the status words are reset to zero once they have been
read.

Returns
Returns zero (0) on success, or (-1) if an error occursaaiedr is set

Errors

When an error occursaderr contains a value indicating the type of error that
occurred.

RADERR_NO_TASK the taskradops_dio is not running.

RADERR_SIGNAL_FAIL the time out signal could not be claimed.
The signalSIGUSR1is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL atimer could not be created. A timer is set
to trigger a signal after the required time
out period.

RADERR_MSG_FAIL the message was interrupted.

RADERR_TME_OUT the message timed out.

RADERR_DIO_FAIL the taskradops_dio failed to complete
this command.

101

get_status pid

Syntax
#include “radops.h”
#include “get_status.h”
int get_status_pid(
struct rawdata*raw_data,
int clear,
pid_t task_id);
Description
Theget_status_pid function sends a message totheops_dio task
identified by the process t@sk_id requesting the AGC and low power status
words.
The values are stored in the raw data structure pointedrembylata If clear
is not equal to zero then the status words are reset to zero once they have been
read.
Returns
Returns zero (0) on success, or (-1) if an error occursaaiedr is set
Errors

When an error occursaderr contains a value indicating the type of error that
occurred.

RADERR_SIGNAL_FAIL the time out signal could not be claimed.
The signalSIGUSR1is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL atimer could not be created. A timer is sgt
to trigger a signal after the required time
out period.

RADERR_MSG_FAIL the message was interrupted.

RADERR_TME_OUT the message timed out.

RADERR_DIO_FAIL the taskradops_dio failed to complete
this command.

102

log_error.o

103

Syntax

Description

Returns

log_error

#include “log_error.h”

int log_error(char *errlog,
char *name,
char *buffer);

Thelog_error function sends a message to éndog task identified by
errlog, containing the error message string pointed tbuffer. If nameis not
NULL the error log will include the string together with the error message.

If errlog is NULL the default name ofiérrlog " will be used.

Returns zero (0) on success, or (-1) if an error occurred.

104

message.o

105

Syntax

Description

Returns

Errors

message

#include “message.h”

int message(char *task,
double time,
void *smsg,
void *rmsg,
unsigned snbytes,
unsigned rnbytes);

Themessage function sends a message pointed tarbggto the task
registered under the nartesk Any reply is placed in the buffemsg The size
of the sent message will Babytesvhile the size of the reply will be truncated
to a maximum ofnbytes

If timeequals zero then the calling process will wait indefinitely for a reply. If
time is greater than zero then the process will tirai¢ seconds before
returning.

The number of bytes send will be the minimum of that specified by the sende
and receiver.

Returns zero (0) on success. If an error occurs then (-1) is returneatiend
is set.

When an error occursaderr contains a value indicating the type of error that
occurred.

RADERR_NO_TASK no task is registered with that name.

RADERR_SIGNAL_FAIL the time out signal could not be claimed.
The signalSIGUSR1is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL atimer could not be created. A timer is sgt
to trigger a signal after the required time
out period.

RADERR_MSG_FAIL the message was interrupted.

RADERR_TME_OUT the message timed out.

=

106

Syntax

Description

Returns

Errors

message_array

#include “message.h”

int message_array(char *task,
double time,
void **smsg,
void **rmsg,
unsigned *snbytes,
unsigned *rnbytes);

Themessage _array function sends an array of messages pointed to by the
arraysmsgto the task registered under the naask Any replies are placed in
the buffers pointed to by the arrapsg The size of each sent message will be
taken from the corresponding entry in the arsmpytesvhile the size of the
reply will be truncated to a maximum of the corresponding entry in the array
rnbytes

If timeequals zero then the calling process will wait indefinitely for a reply. If
timeis greater than zero then the process will wait time seconds before
returning.

The number of bytes send will be the minimum of that specified by the sende
and receiver.

The function scans the arragsisgandrmsg which must be NULL terminated
to determine how many buffers to send and receive.

Returns zero (0) on success. If an error occurs then (-1) is returneatiend
is set.

When an error occursaderr contains a value indicating the type of error that
occurred.

RADERR_NO_TASK no task is registered with that name.

RADERR_SIGNAL_FAIL the time out signal could not be claimed.
The signalSIGUSR1is generated after a
time-out to interrupt the message.

RADERR_NO_MEM memory could not be allocated to store the
messages.

RADERR_TIMER_FAIL atimer could not be created. A timer is sgt
to trigger a signal after the required time
out period.

RADERR_MSG_FAIL the message was interrupted.

RADERR_TME_OUT The message timed out.

=

107

Syntax

Description

Returns

Errors

message pid

#include “message.h”

int message_pid(pid_t task_id,
double time,
void *smsg,
void *rmsg,
unsigned snbytes,
unsigned rnbytes);

Themessage pid function sends a message pointed tsrggto the task
with process idask_id Any reply is placed in the buffemsg The size of the
sent message will mnbyteswhile the size of the reply will be truncated to a
maximum ofrnbytes

If timeequals zero then the calling process will wait indefinitely for a reply. If
time is greater than zero then the process will tirai¢ seconds before
returning.

The number of bytes send will be the minimum of that specified by the sende
and receiver.

Returns zero (0) on success. If an error occurs then (-1) is returneatiend
is set.

When an error occursaderr contains a value indicating the type of error that
occurred.

RADERR_SIGNAL_FAIL the time out signal could not be claimed.
The signalSIGUSR1is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL atimer could not be created. A timer is set
to trigger a signal after the required time
out period.

RADERR_MSG_FAIL the message was interrupted.

RADERR_TME_OUT the message timed out.

=

108

Syntax

Description

Returns

Errors

message pid_array

#include “message.h”

int message_pid_array(
pid_t task_id,
double time,
void **smsg,
void **rmsg,
unsigned *snbytes,
unsigned *rnbytes);

Themessage _array function sends an array of messages pointed to by the
arraysmsgto the task with process fdsk_id Any replies are placed in the
buffers pointed to by the arrasnsg The size of each sent message will be
taken from the corresponding entry in the arsmpytesvhile the size of the
reply will be truncated to a maximum of the corresponding entry in the array
rnbytes

If timeequals zero then the calling process will wait indefinitely for a reply. If
timeis greater than zero then the process will wait time seconds before
returning.

The number of bytes send will be the minimum of that specified by the sende
and receiver.

The function scans the arragsisgandrmsg which must be NULL terminated
to determine how many buffers to send and receive.

Returns zero (0) on success. If an error occurs then (-1) is returnestiend
is set.

When an error occursaderr contains a value indicating the type of error that
occurred.

RADERR_SIGNAL_FAIL the time out signal could not be claimed.
The signalSIGUSR1is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL atimer could not be created. A timer is set
to trigger a signal after the required time
out period.

RADERR_NO_MEM memory could not be allocated to store the
messages.

RADERR_MSG_FAIL the message was interrupted.

RADERR_TME_OUT The message timed out.

=

109

task_id

Syntax
#include “message.h”
pid_t task_id(char *task);
Description
Thetask _id function returns the process i) of the task registered
under the namtask
Returns
Returns the process id on success. If the task cannot be found then (-1) is
returned andaderr is set.
Errors

When an error occursaderr contains a value indicating the type of error that
occurred.

RADERR_NO_TASK no task is registered with that name.

110

option.o

111

Syntax

Description

process_file

#include “option.h”

void process_file(
FILE *fp,
struct option *opt,
void(*opterr)(char *));

Theprocess_file function reads option switched from the file pointed to
by fp. The file should contain space separated command options.

A command line options consists of a list of option switches, strings that star
with the character-"". Each switch has an optional argument following it
witch can be either an integer, floating point number, or another string:

-beam 8 -debug -freq 12.34 -filename test.dat

The structureption contains the following members:

char *optname; the option switch to identify.

char type; the type of the argument following
option.

int set; a flag set when the option is located.

void *ptr; the address to store the argument.

Option switches are read from the file and checked against the array opt. If &
match is found with anptnamemember of one of the structuresoipt, The
correspondingetmember is set to 1 to indicate the option was found.

If the typecharacter is one of the recognized types, the next string in the
command line is assumed to be an argument for the option switch.

There are five types:

‘s’ short int.
I long int.
‘f float.

‘o’ double.
‘t string.

If the argument is one of the numeric types it is converted frorarthestring
and stored at the location pointer to by pitemember. If the argument is a
string, then ptr is set to point to the appropriate elemeatgef

If typeis not one of the recognized types, the option switch is assumed to tak
no arguments.

If an unrecognized option string is found it is passed to the function pointed t
by opterr. This function should report the error to the user and take the
appropriate action.

[®]

112

Returns

process_file

None.

113

Syntax

Description

process_option

#include “option.h”
int process_option(
int argc,
char *argv[],
struct option *opt,
void(*opterr)(char *));

Theprocess_option function processes the command line arguments
according to the option table pointed todpt

The argumenargvis an array of strings extracted from the command line, the
first string is the program name and subsequent strings are the space separ
options. The number of strings contained in the array is definadgay

A command line options consists of a list of option switches, strings that star
with the character-"". Each switch has an optional argument following it
which can be either an integer, floating point number, or another string:

-beam 8 -debug -freq 12.34 -filename test.dat

If the final string on the command line is not part of an option switch it is
treated at a filename of a file containing more option switches.

The structureption contains the following members:

char *optname; the option switch to identify.

char type; the type of the argument following
option.

int set; a flag set when the option is located.

void *ptr; the address to store the argument.

The arrayargv is scanned for option switches which are checked against the
array opt. If a match is found with tleptnamemember of one of the structures
in opt, The correspondingetmember is set to 1 to indicate the option was
found.

If the typecharacter is one of the recognized types, the next string in the
command line is assumed to be an argument for the option switch.

There are five types:

S short int.
I long int.
f float.

d double.

t string.

ated

114

Returns

process_option

If the argument is one of the numeric types it is converted frorarthestring
and stored at the location pointer to by pitemember. If the argument is a
string, then ptr is set to point to the appropriate elemeautgef

If typeis not one of the recognized types, the option switch is assumed to tak
no arguments.

If an unrecognized option string is found it is passed to the function pointed t
by opterr. This function should report the error to the user and take the
appropriate action.

Returns the index adrgv after the last successfully processed option switch. If
the last string on the command line is a filename, this will be one (1) less th3g
argc.

[®]

>

115

read_clock.o

116

read_clock

Syntax

#include “read_clock.h”

void read_clock(int *year,
int *mon,
int *day,
int *hour,
int *minute,
int *second,
int *msec,
int *usec);

Description
Theread_clock function reads the system clock. The system clock is
automatically calibrated against the GPS clock by the dgpsr clock

Returns
The current time, accurate to the nearest second is returned in the variables
pointed to byyear, mon day, hour, minute second At present, the values of
msecandusecare set to zero.

117

read_fit.o

118

read_fit

Syntax
#include “read_fit.h”
int read_fit(
FILE *fp,
struct fitdata *fit_data);
Description
Theread_fit function reads a block of fitted data from the file pointed to by
fp into the structure pointed to iy data
Returns

Returns zero (0) on success, or (-1) if an error occurred.

119

read_raw.o

120

Syntax

Description

Returns

read raw

#include “read_raw.h”
int read_raw(
FILE *fp,
struct rawdata *raw_data);

Theread_raw function reads a raw ACF record from the file pointed tépby
into the structure pointed to bgw_data

Returns zero (0) on success, or (-1) if an error occurred.

121

Syntax

Description

Returns

read raw_data

#include “read_raw.h”
int read_raw_data(
FILE *fp,
struct rawdata *raw_data);

Theread_raw_data function reads a raw ACF record from the file pointed
to byfp into the structure pointed to bgw_data

Only the raw ACFs are read from the file and the Radar parameter block
remains unaffected.

Returns zero (0) on success, or (-1) if an error occurred.

122

sample.o

123

Syntax

Description

add_data

#include “sample.h”

int add_data(struct beam_list **table,
int beam,
int range,
enum param_code);

Theadd_data function is used to create a table that can be used to sample
data produced by fitacf across a scan. The table contains a list of range-beam

coordinates and a list of parameters to record.

Each time theransform_data

function is called with a block of fitted data,
the table is inspected and a record is made of the data for the appropriate
ranges and parameters.

To construct a table, multiple calls are madadd_data with the sampling
coordinates specified lyeamandrange and the parameter to record with
param_codewhich can be one of :

PARAM (dflg
PARAM_gsct
PARAM_p_0
PARAM p_s
PARAM p_|
PARAM_w_|
PARAM_w_s
PARAM_v
PARAM_v_err
PARAM sdev_|
PARAM_ sdev_s
PARAM_ sdev_phi

quality flag.

ground scatter flag.

lag O power.

sigma power.

lambda power.

lambda width.

sigma width.

velocity.

velocity error.

standard deviation of lambda fit.
standard deviation of sigma fit.
standard deviation of phase fit.

The structurdoeam_list

scan. It has the following members:

is a linked list of all the beams to sample across a

short int beam_no;
short int range_max;
struct range_list *table;
struct beam_list *next;

beam number to sample.

maximum range for this beam.
pointer to a table of ranges.

pointer to the next entry in the linked
list, NULL terminated.

The structureange_list

is a linked list of all the ranges to sample within

a beam. It has the following members:

short int range;

long int distance;

struct param_list *table;
struct range_list *next;

the range gate to sample.

the range in kilometers.

pointer to a table of parameters.
pointer to the next entry in the linked
list, NULL terminated.

124

the

add_data

The structurgparam_list is a list of the parameters to sample at a particular
range. It has the following members:

enum param_code code; the parameter to sample.

int total; total number of times a sample has been
taken.

struct time_list *table; pointer to a list of samples.

struct param_list *next; pointer to the next entry in the linked
list, NULL terminated.

The structurdime_list is a list of samples. It has the following members:

union {
double value; a floating point parameter.
int flag; a boolean flag.
} data; union to store the sampled parameter.
struct time_list *next; pointer to the next entry in the linked
list, NULL terminated.
Each member of théme_list linked list is a sample from one scan. The

list is arranged in time order with the first entry being from the most recent
scan. The length of the list, and consequently how many scans are stored, i
dependent on the number of tireekd data is called with that particular
combination of beam, range and parameter.

Returns
Returns zero (0) on success, or (-1) if an error occurs.

125

remove_table

Syntax
#include “sample.h”
void remove_table(
struct beam_list **table);
Description
Theremove_table function frees the memory uses by the sampling table
pointed to beable
Returns

None.

126

transform_data

Syntax
#include “sample.h”
int transform_data(
struct fitdata *fit_data,
struct beam_list **table);
Description
Thetransform_data function extracts the appropriate parameters from the
fitted data structure pointed to fiyy dataand insert them into the sampling
table pointed to byable
Returns

Returns zero (0) on success, or (-1) if the record cannot be processed occufs.

127

task write.o

128

task close

Syntax
#include “task write.h”
int task_close(char *task,
short int year,
short int month,
short int day,
short int hour,
short int minute,
short int second);
Description
Thetask close function sends a message to the program registered undg
the nametask, requesting that any open files are closed.
The task will close the files when it receives data with a time stamp later that
the date and time specified pgar, month day, hour, minuteandsecond
Returns
Returns zero (0) on success, or if an error occurs (-1) is returneddandis
set.
Errors

When an error occursaderr contains a value indicating the type of error that
occurred.

RADERR_NO_TASK no task is registered with that name.

RADERR_SIGNAL_FAIL the time out signal could not be claimed.
The signalSIGUSR1is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL atimer could not be created. A timer is set
to trigger a signal after the required time
out period.

RADERR_MSG_FAIL the message was interrupted.

RADERR_TME_OUT the message timed out.

RADERR_TASK_FAIL the task failed to complete this command.

129

-

task _open

Syntax
#include “task write.h”
int task_open(char *task,
short int year,
short int month,
short int day,
short int hour,
short int minute,
short int second);
Description
Thetask_open function sends a message to the program registered under
the nametask, requesting that files should be opened.
The task will open the files when it receives data with a time stamp later than
the date and time specified pgar, month day, hour, minuteandsecond
Returns
Returns zero (0) on success, or if an error occurs (-1) is returneddandis
set.
Errors

When an error occursaderr contains a value indicating the type of error that
occurred.

RADERR_NO_TASK no task is registered with that name.

RADERR_SIGNAL_FAIL the time out signal could not be claimed.
The signalSIGUSR1is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL atimer could not be created. A timer is set
to trigger a signal after the required time
out period.

RADERR_MSG_FAIL the message was interrupted.

RADERR_TME_OUT the message timed out.

RADERR_TASK_FAIL the task failed to complete this command.

130

task quit

Syntax
#include “task write.h”
int task_quit(char *task);
Description
Thetask_quit function sends a message to the program registered under the
name task, requesting it to shut down and exit.
Returns
Returns zero (0) on success, or if an error occurs (-1) is returneddandis
set.
Errors

When an error occursaderr contains a value indicating the type of error that
occurred.

RADERR_NO_TASK no task is registered with that name.

RADERR_SIGNAL_FAIL the time out signal could not be claimed.
The signalSIGUSR1is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL atimer could not be created. A timer is set
to trigger a signal after the required time
out period.

RADERR_MSG_FAIL the message was interrupted.

RADERR_TME_OUT the message timed out.

RADERR_TASK_FAIL the task failed to complete this command.

131

Syntax

Description

Returns

Errors

task write _aux

#include “task write.h”
int task_write_aux(
char *task,
void *block,
int length);

Thetask_write_aux function sends a message to the program registered
under the namdask, containing a block of auxiliary data, pointed tolidgck
of lengthsizebytes.

The contents of the block of data depends on the receiving task. It is used to
pass parameters and data that are note part of eithemttiata or
fitdata structures to those tasks that require it.

Returns zero (0) on success, or if an error occurs (-1) is returneddandis
set.

When an error occursaderr contains a value indicating the type of error that
occurred.

RADERR_NO_TASK no task is registered with that name.

RADERR_SIGNAL_FAIL the time out signal could not be claimed.
The signalSIGUSR1is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL atimer could not be created. A timer is set
to trigger a signal after the required time
out period.

RADERR_MSG_FAIL the message was interrupted.

RADERR_TME_OUT the message timed out.

RADERR_TASK_FAIL the task failed to complete this command.

132

task write_fit

Syntax
#include “task write.h”
int task_write_fit(
char *task,
struct fitdata *fit_data,
short int flag);
Description
Thetask_ write_fit function sends a message to the program registered
under the naméask, containing the fitted data pointed to fity data
If flag is set to one (1) then the data will be stored in a file, otherwise it will bg
processed but not recorded.
Returns
Returns zero (0) on success, or if an error occurs (-1) is returneddandis
set.
Errors

When an error occursaderr contains a value indicating the type of error that
occurred.

RADERR_NO_TASK no task is registered with that name.

RADERR_SIGNAL_FAIL the time out signal could not be claimed.
The signalSIGUSR1is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL atimer could not be created. A timer is sgt
to trigger a signal after the required time
out period.

RADERR_MSG_FAIL the message was interrupted.

RADERR_TME_OUT the message timed out.

RADERR_TASK_FAIL the task failed to complete this command.

133

task write_raw

Syntax

#include “task write.h”

int task_write_raw(
char *task,
struct rawdata *raw_data,
short int flag);

Description
Thetask_write_raw function sends a message to the program registered
under the nameéask, containing the raw ACF data pointed tordayv_data

If flag is set to one (1) then the data will be stored in a file, otherwise it will bg
processed but not recorded.

Returns
Returns zero (0) on success, or if an error occurs (-1) is returneddandis
set.

Errors
When an error occursaderr contains a value indicating the type of error that
occurred.

RADERR_NO_TASK no task is registered with that name.

RADERR_SIGNAL_FAIL the time out signal could not be claimed.
The signalSIGUSR1is generated after a
time-out to interrupt the message.

RADERR_TIMER_FAIL atimer could not be created. A timer is sgt
to trigger a signal after the required time
out period.

RADERR_MSG_FAIL the message was interrupted.

RADERR_TME_OUT the message timed out.

RADERR_TASK_FAIL the task failed to complete this command.

134

user_int.o

135

scheduled

Syntax
#include “user_int.h”
int scheduled(void);
Description
Thescheduled function tests whether the control program was started by th
scheduler.
Returns

Returns one (1) if the program was started by the scheduler, or zero (0)
otherwise.

136

Syntax

Description

Returns

register_program

#include “user_int.h”

int register_program(
char *schedule_name,
char *control_name);

Theregister_program attempts to register the control program with the
operating system under the naocmmtrol_namelt also attempts to locate the
scheduler registered under the nasukedule_name

If schedule_namer control_names NULL the appropriate default names of
“/schedule ", and “/control_program " will be used.

Returns one (1) if successful, or (-1) if an error occurred.

137

Syntax

Description

go

show [variable_name].

<variable> = < value>

user_int

#include “user_int.h”

int user_int(
struct rawdata *raw_data,
char *variables,

)k

Theuser_int function checks to see if the task alter is running and wishes
to change the radar parameters stored in the structure pointechio luata

An extra set of user defined parameters can also be sent to the task using th
variablesstring and the optional arguments.

Within alter commands can be entered at the shell shown bg'tipedmpt.
The shell supports four commands :

The shell supports three commands :

go
show

<variable> = < value>

Typing “go” will send the altered parameters back to the control program so
that they will take affect at the start of the next integration period.

Typing “show” will list the values of the specified variables. If no variable
names are listed then the entire set will be shown

A new value is assigned to a variable by using tiesfgn:

bmnum=12
combf=Hello world

There should be no spaces between the valuerthedn, or the variable
name.

The radar parameters that can be altered are :

D

138

user_int

intt The integration period.

txpl The pulse length.

mpinc The lag separation in micro seconds.
mppul The number of pulses in a pulse pattern.
mplgs The number of lags in the lag table.
nrang The number of range gates.

frang The distance in kilometers to the first range gate.
rsep The range separation in kilometers.
bmnum The current beam number.

xcf The cross correlation flag.

tfreq The transmitted frequency.

scan The scan mode.

mMXpwr The maximum power allowed.

Ivmax The maximum noise level allowed.
cp The program id.

usr_resS1 User defined short variable 1.
usr_resS2 User defined short variable 2.
usr_resS3 User defined short variable 3.
usr_resL1 User defined long variable 1.
usr_resL2 User defined long variable 2.

combf The comment buffer.

The stringvariablesis an identifier used to classify the optional argument list
that follows it. The string consists of a set of space separated labels and cod
identify the name and type of the pointers that make up the variable argume
list.

Four codes are recognized :

i short int.
I long int.
f float.

d double.
S string.

Each label is followed by a type code :

"a_short_integeri a_string s a_float f*

Would specify that the three pointers following the variables string were of
types :short int * char *, andfloat *. They would be given the labels :

“a_short_integer ,“a string ", and “a_float

Typing “show” in the shell of the alter task would list these three extra
variables as well as the radar parameters.

139

BS to
Nt

user_int

The function user_int is also used to detect when the scheduler wishes to
terminate the control program. If the function returns one (1), the control
program should shut down as soon as possible.

Returns
Returns one (1) if the control program should shut down, or zero (0) otherwige.

140

The Task Library

141

add_point.o

142

Syntax

Description

Returns

add_point

#include “util/add_point.h”

int add_point(struct parray *a,
unsigned char op,
int X,
inty,
int wdt,
int hgt);

The functionadd_point adds a point to a clipping table.

A clipping table is a list of plotting commands for drawing complex outlines.
Each entry in the table has an associated action, either plot or move. If the
action is to plot, a line is drawn from between the last point and the current
point.

When a point is added to the table by the funciiddh point a check is
performed to ensure that the coordinates are within the boundaries of the
screen. If they are not the point is automatically converted to a move. If the
previous point was also off screen then it is replaced by the current point.

The coordinates of the point are definedklandy. If opis set to zero then the
action to associate with the point is to plot a line, otherwise a move is
performed. The coordinate limits range from zero (0) to the width and height
the screen as defined gt andhgt

The clipping table is stored in the structure pointed ta.3he structure
parray has the following members:

long int nelem; the number of points in the table.
struct apnt *pnt; a pointer to an array containing the
points.

The structureapnt has the following members:

unsigned char op; the action to perform: O=draw a line,
otherwise move.

short int x; the x coordinate.

short int y; the y coordinate.

Returns zero (0) if the point was successfully added to the table or (-1) if an
error occurred.

143

of

cnv_time.o

144

get_time

Syntax
#include “util/cnv_time.h”
void get_time(long int time,
int yr,
int *mo,
int *dy,
int *hr,
int *mn,
int *sc);
Description
Theget_time function converts the time expressed as seconds passed the
start of the year into day, month, hour, minute, and second.
The variabldgimeis the number of seconds that have elapsed since midnight
the first of January in the yewr. The converted time, expressed as month, day
hour minute and second, is stored in the variables pointedrtaay, hr, mn
andsc
Returns
None.

145

Syntax

Description

Returns

year_sec

#include “util/cnv_time.h”

long int year_sec(int yr,
int mo,
int dy,
int hr,
int mn,
int sec);

Theyear_sec function converts the time expressed as year, month, day,

hour, minute, and second into the number of seconds that have elapsed from

the start of the year.
The time expressed as month, day, hour minute and second is defined by th

variablesyr, mo, dy, hr, mn andsec

Returns the number of seconds that have elapsed since midnight on the first
January.

1%

of

146

cnvt_coord.o

147

Syntax

Description

Returns

cubic

#include “geo/geo.h”

void cubic(int center,
int berd,
int rcrd,
struct rpos *pos,
int lagfr,
int smsep,
int height,
double *x,
double *y,
double *z);

The functioncubic converts a Radar range/beam coordinate pair into a
geographic location expressed in normalized Cartesian coordinates.

If variablesbcrd andrcrd define the beam and range that the conversion is to

be performed on. If the flag center is not equal to zero the position is calculated

for the center of the range cell, otherwise the left hand lower edge of the cell
used.

The location of the Radar is defined by the structure pointed fpdsyIn
addition, the calculation requires the lag to first range in milliseconds as
defined bylagfr, and the sample separation, also in milliseconds as defined b
smsep

The variableheightdefines the height above in kilometers above the Radar at
which the position is to be calculated. However, if height is less than 90, it ig
assumed to be an angle of elevation from the Radar site.

The converted position expressed as normalized Cartesian coordinates is st(

in the variables pointed to byy, andz. The coordinate system maps positions
on the Earth’s surface to a sphere of radius one (1).

None.

is

red

148

Syntax

Description

Returns

geographic

#include “geo/geo.h”

void geographic(int center,
int berd,
int rcrd,
struct rpos *pos,
int lagfr,
int smsep,
int height,
double *rho,
double *lat,
double *Ing);

The functiongeographic converts a Radar range/beam coordinate pair into
a geographic location expressed in longitude and latitude.

If variablesbcrd andrcrd define the beam and range that the conversion is to

be performed on. If the flag center is not equal to zero the position is calculated

for the center of the range cell, otherwise the left hand lower edge of the cell
used.

The location of the Radar is defined by the structure pointed fpdsyIn
addition, the calculation requires the lag to first range in milliseconds as
defined bylagfr, and the sample separation, also in milliseconds as defined b
smsep

The variableneightdefines the height in kilometers above the Radar at which
the position is to be calculated. However, if height is less than 90, it is assun
to be an angle of elevation from the Radar site.

The converted position expressed as distance from the center of the Earth a
latitude and longitude are stored in the variables pointed tbdyéat, anding.

None.

is

ned

149

Syntax

Description

Returns

load_rpos

#include “geo/geo.h”

int load_rpos(char *fname,

int year,
long int yr_sec);

The functionload_rpos loads a set of Radar positions from the file identified
by fname The position of the Radar at ygarar, andyr_secseconds within

that year are loaded.

The position file is a plain text file with each line containing a single entry for
a Radar at a specific time and date. If a line begins with the char#tiers'

treated as a comment and ignored.

Each line consists of a space separated list of data that defines the Radar

position. The data are:

Station ID
Year

Year Second
Latitude
Longitude

Altitude

Bore Site
Beam Separation

V direction
Attenuation
Interferometer Position
Receiver Rise Time

the station identifier code.

date of the position.

seconds passed year of the position
latitude of the center tower of the Rag
longitude of the center tower of the
Radar.
altitude in kilometers of the Radar abq
sea-level.

line of sight of the radar.

angular separation of the beams in

degrees.

rise time of the receiver in micro-

lar.

ve

seconds.

Returns zero (0) on success, or (-1) otherwise.

150

radar_pos

Syntax
#include “geo/geo.h”
struct rpos *radar_pos(int station);
Description
The functionradar_pos returns a pointer to a structure of the types
containing the position of the Radar with station identstation
The structurepos has the following members:
double gdlat; latitude of the center tower of the Radar.
double gdlon; longitude of the center tower of the
Radar
double boresite; line of sight of the radar.
double bmwidth; angular separation of the beams in
degrees.
double rxris; rise time of the receiver in micro-
seconds.
Returns

Returns a pointer to a structure of types containing the location of the
Radar, oNULL if an error occurred.

151

echo_util.o

152

echo_regqister

Syntax
#include “echo/echo_util.h”
int echo_register(char *name,
char *echo_name,
char flag);
Description

The functionecho_register registers a task witecho_data so that it
will receive Radar data.
The function will attempt to connect with the versioreoho_data
registered under the naraeho_namelf this string is NULL, then the default
name of fecho _data " is used.
The stringnameis used byecho _data when it reports activities involving
the task.
The variable flag defines what kind of data will be forwarded to the task.
Different combinations of data can be forwarded by combining the flags using a
bitwise OR:

echostat=echo_register(“mytask”,

NULL,
PASS_RAW | PASS_FIT);

The flags are:

PASS AUX pass auxiliary data.

PASS FIT pass data frorfitacf

PASS RAW pass the raw ACF data.

Returns

Returns zero (0) on success, or (-1) if an error occurs.

153

file_io.o

154

Syntax

Description

decode_msg

#include “file_io.h”
unsigned char *decode_msg(int tid,char
msg,char *rmsg,int *flag);

Thedecode_msg function decodes one of the standard data transfer messa
sent from a control program by tteesk_write library.

The function decodes the data component of a message given the header
charactermsg and the task ictifl) of the task that sent tid.

The following code demonstrates how to extract the header when a message i

received:

while (1) { /* start of loop */

/* when a message is received extract
the first byte */

tid=Receive(0,&msg,sizeof(char));
/* decode the message */
data=decode_msg(tid,msg,&rmsg,&flag);

[* process the data (if any) and reply to
the message */

After the function has been called, the character pointed tm$y contains
the message to send in reply. The possible replies are:

TASK_OK the message was successfully decoded.

TASK_ERR an error occurred when decoding the
message.

UNKNOWN_MESSAGE the message could not be recognized.

If the message could not be recognized or an error occurred, the calling task
should reply to the message immediately and return:

[* process the data (if any) and reply to the
message*/

if ((rmsg==UNKNOWN_TYPE) ||
(rmsg==TASK_ERR)) {
Reply(reply_tid,&rmsg,sizeof(char));
continue; /* skip to the end of the loop */

}

/* Process the data here */

jes

155

Returns

decode_msg

If the message contains a block of data then the function will return a pointer
it, otherwiseNULL is returned.

After the message has been decoded the integer pointedlag bgntains a set
of Boolean flags that indicate the file operations to perform.

The flags are:

OPEN_BIT open a new file before processing the blpck
of data.

CLOSE_BIT if a file is open then close it before
processing this block of data.

WRITE_BIT if a file is open then write the processed
data to it..

Thetask write controls file operations by sending a message containing
the time at which files should be opened and closedd&hede_msg

function records these times and compares them with the time-stamps
associated with the Radar data blocks. At the appropriate time the function s
the flags in thdlag variable.

The calling program should test for each flag and take the appropriate actior

if (fp '=NULL) && (flag & CLOSE_BIT))
fclose(fp) /* close the file */

if (lag & OPEN_BIT)
fp=fopen(fname,"w”); /* open a new file */

[* process data */

if (flag & WRITE_BIT) && (fp '=NULL))
/* write record */

Returns a pointer to a block of data decoded from the message or NULL. The

message to send in reply is storednagg and the file operations to perform
are stored dtag.

ets

156

Syntax

Description

Returns

open_file

#include “file_io.h”

char *open_file(char *pathenv,struct
radops_parms *prm,char *ext,int
mode,char *sfx,int flag);

Theopen_file function attempts to create an empty file with a unique
filename according to the SuperDARN naming convention of :

yymmddhhs[x].eee

Where:
vy yearXXyy.
mm month.
dd day.
hh hour.
S station identifier letter.
X optional suffix to preserve unique filenames (A-Z,a1z).
eee file extension. e.g. FIT,DAT.

The stringpathenvspecifies the pathname of the directory to store the file in
and the stringxtcontains the extension or file-type to apply.

The date to associate with the file is taken from the radar parameter block
pointed to byprm.

If the parametemodeis set to zero (0), the file mode bits will be overwritten sg
that the file can be read and written by all.

The character pointauffixis used to store the suffix character that must
sometimes be applied to the filename to ensure a unique name.

Theflag parameter controls the operation of the function, it has the possible
values of:

0 check for the existence of a file with this filename. |f it
already exists step through the possible suffixes until a
unique name is found.

1 force the use of the supplied suffix and if the file
already exists overwrite it with an empty file.
2 force the use of the supplied suffix, and if the file

already exists leave it intact.

Returns the full pathname of the file createdNoILL if an error occurred.

157

filer.o

158

Syntax

Description

Returns

filer

#include “filer/filer.nh”

int filer(char *title,
char *path,
char *dir_name,
char *file_name);

Thefiler function draws and maintains a file selection window on the
terminal. The stringitle is printed above the window. The initial directory
displayed in the window is specified bir_name the initial file selected is
defined byfile_name The final complete path name of the file is stored in the
string pathwhen the function returns.

The file selection window is split into two, the top half of the window shows th
full path name of the selected file. The bottom half of the window shows the
contents of the directory that the file is in.

Files can be selected by pressing the up and down arrow keys to scroll throu
the contents of the directory, or by clicking on a file with the mouse. The nam

of the file can be changed by typing a new name in the top half of the window.

A different directory can be selected by typing its name in the top half of the
window and pressing return.

You must call theerm_load function before attempting to call this function.

Returns the key code that caused the filer to terminate, eitbaté®r=" or
“<escape”. The string path will contain the complgiathnameof the selected
file.

159

leaf name

Syntax
#include “filer/filer.h”
char *leaf_name(char *path);
Description
Theleaf name function extracts the leaf name of a complete file path.
“ radops/srcitask_lib/filer.c " would be truncated to
“filer.c
Returns

Returns a pointer to the extracted leaf name.

160

gbuf _util.o

161

Syntax

Description

Returns

get_display

#include “gbuf/gbuf_util.h”
int get_display(char *fname,struct gbuf
**g,struct image_header **hdr);

Theget_display function attempts to claim one of the frame buffers used
by thegbuf driver.

The driver maintains a set of frame buffers in shared memory. Each buffer is
identified by a filename under thé&d&v/shmem ” directory. The filenames
are of the form Display.con X", wherex is the console number for the
display.

When the function is called it will attempt to access the frame buffer identifieq
by fname If successful a pointer to a structure containing information about th
display is returned ihdr, and the pointer to the actual frame buffer is returned
ing.

The structure image_header has the following members:

long int size; the total size of the shared memory
buffer, including this header.

pid_t pid; the process ID of thgbuf driver that
created the buffer.

short int pflag; the palette flag. Ipflag is not equal tg

zero then the palette registers will be set
whenever the console becomes active.

long int pal_reg[256]; the contents of the palette registers far
this display.

short int numxpixels; the width of the display in pixels.

short int numypixels; the height of the display in pixels.

short int bp; the number of bits per pixel for the
display.

Returns zero (0) on success and sets the pointer hdr and g. If an error occur
1) is returned.

)
e

162

refresh_display

Syntax
#include “gbuf/gbuf_util.h”
int refresh_display(struct image_header
*hdr);
Description
The functionrefresh_display signals thegbuf driver that the display
identified byhdr should be redisplayed on the console.
Thegbuf program maintains a frame buffer on which all graphics operation
are performed. However, operations are only reflected on the console screen
when it first becomes active and after thesh_display function is
called.
Returns

Returns zero (0) on success, or (-1) if the refresh failed.

163

graph_lib.o

164

Syntax

Description

Returns

bgcolor

#include “graph_lib.h”
void bgcolor(int c);

The functionbgcolor sets the current background coloucto

None.

165

Syntax

Description

Returns

clg

#include “graph_lib.h”
void clg();

The functionclg clears the contents of the currently active graphics buffer to
the background colour.

None.

166

Syntax

Description

Returns

cnv_to_ppm

#include “graph_lib.h”
int cnv_to_ppm(FILE *fp);

The functioncnv_to_ppm converts the current graphics buffer intBaatable
PixMap PPM) image which is written to the open file pointed to by fp.

The PPM format is recognized by a large number of graphics packages.

Returns zero (0) on success, or (-1) if an error occurred.

167

Syntax

Description

Returns

color

#include “graph_lib.h”
void color(intc);

The functioncolor sets the current foreground colouicto

None.

168

copy_gbuf

Syntax
#include “graph_lib.h”
int copy_gbuf(struct gbuf *ga,
struct gbug *gb);
Description
Thecopy_gbuf function copies the contents of the graphics buffer pointed t(
by gb to the one pointed to lya. The buffers must be of the same size.
Returns

Returns zero (0) on success, or (-1) if an error occurred.

169

Syntax

Description

Returns

copy_pixel

#include “graph_lib.h”

void copy_pixel(struct gbuf *ga,
struct gbuf *gb,
int X,
inty);

Thecopy_pixel function copies a single pixel from the graphics buffer
pointed to bygb to the one pointed to lya. The buffers must be of the same
size.

The pixel is taken from the location specifiedxogndy.

None.

170

copy_polygon

Syntax
#include “graph_lib.h”
void copy_polygon(struct gbuf *ga,
struct gbuf *gb,
int num,
int *x,
int *y);
Description
Thecopy_polygon function copies a polygon from the graphics buffer
pointed to bygb to the one pointed to lya. The buffers must be of the same
size.
The arrayx andy define the vertices of the polygon. The number of elements
in each array must be equaliomwhich is the number of vertices in the
polygon.
Returns
None.

171

Syntax

Description

Returns

draw

#include “graph_lib.h”
void draw(int x,inty);

The functiondraw plots a line from the current graphics cursor to the position

specified byx andy. The current graphics cursor is set to the end of the line as

defined byx andy.

None.

b

172

draw_ellipse

Syntax
#include “graph_lib.h”
void draw_ellipse(int fill,
int X,
inty,
int w,
int h);
Description
The draw_ellipse function draws an ellipse.
The center of the ellipse is defined>bgindy, and the x and y radii are defined
byw andh. If fill is equal to zero (0) then only the outline of the ellipse is
drawn, otherwise it is filled.
Returns

None.

173

draw_polygon

Syntax
#include “graph_lib.h”
void draw_polygon(int num,
int *x,
int *y);
Description
Thedraw_polygon function plots a filled polygon.
The arrayx andy define the vertices of the polygon. The number of elements
in each array must be equaliomwhich is the number of vertices in the
polygon.
The current graphics cursor is set to the coordinate of the first vertex of the
polygon.
Returns
None.

174

draw_rectangle

Syntax
#include “graph_lib.h”
void draw_rectangle(int fill,
int X,
inty,
int w,
int h);
Description
The functiondraw_rectangle draws a rectangle with bottom left
coordinate defined by andy, and with width and height defined tay andh.
If fill is equal to zero (0) then only the outline of the ellipse is drawn, otherwise
it is filled.
Returns
None.

175

draw_text

Syntax
#include “graph_lib.h”
void draw_text(char *text);
Description
The functiondraw_text plots the text stringextat the current graphics
cursor.
Returns
None.

176

Syntax

Description

Returns

free_gbuf

#include “graph_lib.h”
void free_gbuf(struct gbuf *gf);

The functionfree_gbuf releases the memory claimed for the graphics buffef
pointed to bygf.

None.

177

Syntax

Description

Returns

make_gbuf

#include “graph_lib.h”
struct gbuf *make_gbuf(int wdt,int
hgt,unsigned char *pal_reg);

Themake gbuf function reserves memory for a graphics buffer. The buffer i$

the same format as that used bydgbaf driver and can be used as a frame
store.

The size of the buffer is defined gt andhgt.
The parametepal_regpoints to an array of palette registers that will be used

when displaying the image or when it is saved in a graphics file. The two
dimensional array has 256x3 elements:

pal_reg[n][O]; red component.
pal_reg[n][1]; green component.
pal_reg[n][2]; blue component.

The function returns a pointer to a structure of the type gbuf which has the
following members:

int wdt; width of the buffer in pixels.

int hgt; height of the buffer in pixels.

int x; the X coordinate of the graphics cursar.
inty; the Y coordinate of the graphics cursar.
char c; the foreground colour palette index.
char bc; the background colour palette index.
char pal_reg[256][3]; the palette registers.

char *buf; the memory to store the image in.

Returns a pointer to the graphics buffer created, or if an error océitieldis
returned.

b

178

Syntax

Description

Returns

move

#include “graph_lib.h”
void move(intx,
inty);

The functionmove sets the current graphics cursor to the position specified by
x andy.

None.

179

Syntax

Description

Returns

set_gbuf

#include “graph_lib.h”
void set_gbuf(struct gbuf *gf);

The functionset_gbuf sets the active graphics area to the buffer pointed to
by gf. All subsequent graphics operations will be performed on this buffer.

None.

180

Syntax

Description

Returns

write pixel

#include “graph_lib.h”
void write_pixel(int X,
inty);

The functionwrite_pixel plots a single pixel at the position specifiedxy
andy in the current foreground colour.

None.

181

log_error.o

182

Syntax

Description

Returns

log_error

#include “log_error.h”

int log_error(char *errlog,
char *name,
char *buffer);

Thelog_error function sends a message to éndog task identified by
errlog, containing the error message string pointed tbuffer. If nameis not
NULL the error log will include the string together with the error message.

If errlog is NULL the default name ofiérrlog " will be used.

Returns zero (0) on success, or (-1) if an error occurred.

183

message.o

184

Syntax

Description

Returns

Errors

message

#include “message.h”

int message(char *task,
double time,
void *smsg,
void *rmsg,
unsigned snbytes,
unsigned rnbytes);

Themessage function sends a message pointed tarbggto the task
registered under the nartesk Any reply is placed in the buffemsg The size
of the sent message will Babytesvhile the size of the reply will be truncated
to a maximum ofnbytes

If timeequals zero then the calling process will wait indefinitely for a reply. If
time is greater than zero then the process will tirai¢ seconds before
returning.

The number of bytes send will be the minimum of that specified by the sende
and receiver.

Returns zero (0) on success. If an error occurs then (-1) is returnetsgard
is set.

When an error occurgsgerrcontains a value indicating the type of error that
occurred.

MSGERR_NO_TASK no task is registered with that name.

MSGERR_SIGNAL_FAIL the time out signal could not be claimed.
The signalSIGUSR1is generated after a
time-out to interrupt the message.

MSGERR_TIMER_FAIL a timer could not be created. A timer is set
to trigger a signal after the required time
out period.

MSGERR_MSG_FAIL the message was interrupted.

MSGERR_TME_OUT the message timed out.

=

185

Syntax

Description

Returns

Errors

message_array

#include “message.h”

int message_array(char *task,
double time,
void **smsg,
void **rmsg,
unsigned *snbytes,
unsigned *rnbytes);

Themessage _array function sends an array of messages pointed to by the
arraysmsgto the task registered under the naask Any replies are placed in
the buffers pointed to by the arrapsg The size of each sent message will be
taken from the corresponding entry in the arsmpytesvhile the size of the
reply will be truncated to a maximum of the corresponding entry in the array
rnbytes

If timeequals zero then the calling process will wait indefinitely for a reply. If
timeis greater than zero then the process will wait time seconds before
returning.

The number of bytes send will be the minimum of that specified by the sende
and receiver.

The function scans the arragsisgandrmsg which must be NULL terminated
to determine how many buffers to send and receive.

Returns zero (0) on success. If an error occurs then (-1) is returnetsgard
is set.

When an error occurgsgerrcontains a value indicating the type of error that
occurred.

MSGERR_NO_TASK no task is registered with that name.

MSGERR_SIGNAL_FAIL the time out signal could not be claimed.
The signalSIGUSR1is generated after a
time-out to interrupt the message.

MSGERR_NO_MEM memory could not be allocated to store the
messages.

MSGERR_TIMER_FAIL a timer could not be created. A timer is set
to trigger a signal after the required time
out period.

MSGERR_MSG_FAIL the message was interrupted.

MSGERR_TME_OUT The message timed out.

=

186

Syntax

Description

Returns

Errors

message pid

#include “message.h”

int message_pid(pid_t task_id,
double time,
void *smsg,
void *rmsg,
unsigned snbytes,
unsigned rnbytes);

Themessage pid function sends a message pointed tsrggto the task
with process idask_id Any reply is placed in the buffemsg The size of the
sent message will mnbyteswhile the size of the reply will be truncated to a
maximum ofrnbytes

If timeequals zero then the calling process will wait indefinitely for a reply. If
time is greater than zero then the process will tirai¢ seconds before
returning.

The number of bytes send will be the minimum of that specified by the sende
and receiver.

Returns zero (0) on success. If an error occurs then (-1) is returnetsgard
is set.

When an error occurgsgerrcontains a value indicating the type of error that
occurred.

MSGERR_SIGNAL_FAIL the time out signal could not be claimed.
The signalSIGUSR1is generated after a
time-out to interrupt the message.

MSGERR_TIMER_FAIL a timer could not be created. A timer is set
to trigger a signal after the required time
out period.

MSGERR_MSG_FAIL the message was interrupted.

MSGERR_TME_OUT the message timed out.

=

187

Syntax

Description

Returns

Errors

message pid_array

#include “message.h”

int message_pid_array(
pid_t task_id,
double time,
void **smsg,
void **rmsg,
unsigned *snbytes,
unsigned *rnbytes);

Themessage _array function sends an array of messages pointed to by the
arraysmsgto the task with process fdsk_id Any replies are placed in the
buffers pointed to by the arrasnsg The size of each sent message will be
taken from the corresponding entry in the arsmpytesvhile the size of the
reply will be truncated to a maximum of the corresponding entry in the array
rnbytes

If timeequals zero then the calling process will wait indefinitely for a reply. If
timeis greater than zero then the process will wait time seconds before
returning.

The number of bytes send will be the minimum of that specified by the sende
and receiver.

The function scans the arragsisgandrmsg which must be NULL terminated
to determine how many buffers to send and receive.

Returns zero (0) on success. If an error occurs then (-1) is returnetsgard
is set.

When an error occurgsgerrcontains a value indicating the type of error that
occurred.

MSGERR_SIGNAL_FAIL the time out signal could not be claimed.
The signalSIGUSR1is generated after a
time-out to interrupt the message.

MSGERR_TIMER_FAIL a timer could not be created. A timer is set
to trigger a signal after the required time
out period.

MSGERR_NO_MEM memory could not be allocated to store the
messages.

MSGERR_MSG_FAIL the message was interrupted.

MSGERR_TME_OUT The message timed out.

=

188

task_id

Syntax
#include “message.h”
pid_t task_id(char *task);
Description
Thetask _id function returns the process i) of the task registered
under the namtask
Returns
Returns the process id on success. If the task cannot be found then (-1) is
returned andansgerris set.
Errors

When an error occurgjsgerrcontains a value indicating the type of error that
occurred.

MSGERR_NO_TASK no task is registered with that name.

189

radar_name.o

190

radar_code

Syntax
#include “util/radar_name.h”
char *radar_code(int station_id);
Description
Theradar_code function returns the identifying letter of the station with
the identifier codestation_id
Returns

Returns a character containing the identifier letter of the Radar station or the
string “x” if the station is unknown

191

radar_name

Syntax
#include “util/radar_name.h”
char *radar_name(int station_id);
Description
Theradar_name function returns the name of the station with the identifier
codestation_id
Returns

Returns a text string containing the name of the Radar station or the string
“Unknown” if the station is unknown.

192

read_clock.o

193

read_clock

Syntax

#include “read_clock.h”

void read_clock(int *year,
int *mon,
int *day,
int *hour,
int *minute,
int *second,
int *msec,
int *usec);

Description
Theread_clock function reads the system clock. The system clock is
automatically calibrated against the GPS clock by the dgpsr clock

Returns
The current time, accurate to the nearest second is returned in the variables
pointed to byyear, mon day, hour, minute second At present, the values of
msecandusecare set to zero.

194

read data.o

195

read_double

Syntax
#include “util/read_data.h”
int read_double(FILE *fp, double *val);
Description
Theread_double function reads an number of tydeuble from the file
pointed to byfp. The result is stored at the address pointed teaby
Returns

Returns zero (0) on success, or (-1) if an error occurred.

196

read_float

Syntax
#include “util/read_data.h”
int read_float(FILE *fp, float *val);
Description
Theread_float function reads an number of tyfleat from the file
pointed to byfp. The result is stored at the address pointed teaby
Returns

Returns zero (0) on success, or (-1) if an error occurred.

197

read_long

Syntax
#include “util/read_data.h”
int read_long(FILE *fp,
long int *val);
Description
Theread_long function reads an number of tylpng from the file
pointed to byfp. The result is stored at the address pointed teaby
Returns

Returns zero (0) on success, or (-1) if an error occurred.

198

Syntax

Description

Returns

read_short

#include “util/read_data.h”
int read_short(FILE *fp,
short int *val);

Theread_short function reads an number of typleort

from the file

pointed to byfp. The result is stored at the address pointed teaby

Returns zero (0) on success, or (-1) if an error occurred.

199

read_fit.o

200

read_fit

Syntax
#include “read_fit.h”
int read_fit(
FILE *fp,
struct fitdata *fit_data);
Description
Theread_fit function reads a block of fitted data from the file pointed to by
fp into the structure pointed to iy data
Returns

Returns zero (0) on success, or (-1) if an error occurred.

201

read_raw.o

202

Syntax

Description

Returns

read raw

#include “read_raw.h”
int read_raw(
FILE *fp,
struct rawdata *raw_data);

Theread_raw function reads a raw ACF record from the file pointed tépby
into the structure pointed to bgw_data

Returns zero (0) on success, or (-1) if an error occurred.

203

Syntax

Description

Returns

read raw_data

#include “read_raw.h”
int read_raw_data(
FILE *fp,
struct rawdata *raw_data);

Theread_raw_data function reads a raw ACF record from the file pointed
to byfp into the structure pointed to bgw_data

Only the raw ACFs are read from the file and the Radar parameter block
remains unaffected.

Returns zero (0) on success, or (-1) if an error occured.

204

sample.o

205

Syntax

Description

add_data

#include “sample.h”

int add_data(struct beam_list **table,
int beam,
int range,
enum param_code);

Theadd_data function is used to create a table that can be used to sample
data produced by fitacf across a scan. The table contains a list of range-beam

coordinates and a list of parameters to record.

Each time theransform_data

function is called with a block of fitted data,
the table is inspected and a record is made of the data for the appropriate
ranges and parameters.

To construct a table, multiple calls are madadd_data with the sampling
coordinates specified lyeamandrange and the parameter to record with
param_codewhich can be one of :

PARAM (dflg
PARAM_gsct
PARAM_p_0
PARAM p_s
PARAM p_|
PARAM_w_|
PARAM_w_s
PARAM_v
PARAM_v_err
PARAM sdev_|
PARAM_ sdev_s
PARAM_ sdev_phi

quality flag.

ground scatter flag.

lag O power.

sigma power.

lambda power.

lambda width.

sigma width.

velocity.

velocity error.

standard deviation of lambda fit.
standard deviation of sigma fit.
standard deviation of phase fit.

The structurdoeam_list

scan. It has the following members:

is a linked list of all the beams to sample across a

short int beam_no;
short int range_max;
struct range_list *table;
struct beam_list *next;

beam number to sample.

maximum range for this beam.
pointer to a table of ranges.

pointer to the next entry in the linked
list, NULL terminated.

The structureange_list

is a linked list of all the ranges to sample within

a beam. It has the following members:

short int range;

long int distance;

struct param_list *table;
struct range_list *next;

the range gate to sample.

the range in kilometers.

pointer to a table of parameters.
pointer to the next entry in the linked
list, NULL terminated.

206

the

add_data

The structurgparam_list is a list of the parameters to sample at a particular
range. It has the following members:

enum param_code code; the parameter to sample.

int total; total number of times a sample has been
taken.

struct time_list *table; pointer to a list of samples.

struct param_list *next; pointer to the next entry in the linked
list, NULL terminated.

The structurdime_list is a list of samples. It has the following members:

union {
double value; a floating point parameter.
int flag; a boolean flag.
} data; union to store the sampled parameter.
struct time_list *next; pointer to the next entry in the linked
list, NULL terminated.
Each member of théme_list linked list is a sample from one scan. The

list is arranged in time order with the first entry being from the most recent
scan. The length of the list, and consequently how many scans are stored, i
dependent on the number of tireekd data is called with that particular
combination of beam, range and parameter.

Returns
Returns zero (0) on success, or (-1) if an error occurs.

207

remove_table

Syntax
#include “sample.h”
void remove_table(
struct beam_list **table);
Description
Theremove_table function frees the memory uses by the sampling table
pointed to beable
Returns

None.

208

transform_data

Syntax
#include “sample.h”
int transform_data(
struct fitdata *fit_data,
struct beam_list **table);
Description
Thetransform_data function extracts the appropriate parameters from the
fitted data structure pointed to fiyy dataand insert them into the sampling
table pointed to byable
Returns

Returns zero (0) on success, or (-1) if the record cannot be processed occufs.

209

terminal.o

210

centre_text

Syntax
#include “terminal/terminal.h”
void centre_text(int row,
unsigned attr,
char *text);
Description
Thecentre_text function displays the stringxtcentered on the middle of
the screen, on lineow, with the terminal attributesttr.
You must call theerm_load function before attempting to call this function.
Returns

None.

211

Syntax

Description

Returns

confirm_prompt

#include “terminal/terminal.h”
int confirm_prompt(char *text);

Theconfirm_prompt function displays a box with the message in the
stringtexton the screen together with two buttons markaes> " and
“<no>". The function waits until the user selects one of the buttons.

You must call theerm_load function before attempting to call this function.

Returns one (1) if £no>" is selected, or zero (0) otherwise.

212

draw_menu

Syntax
#include “terminal/terminal.h”
int draw_menu(
struct menu_entry *menu,
int cursor);
Description
Thedraw_menu function displays a menu on the screen with eotngor hi-
lighted.
You must call theerm_load function before attempting to call this function.
Returns

Returns the number of entries in the menu.

213

draw_menu_item

Syntax
#include “terminal/terminal.h”
void draw_menu_item(
struct menu_entry *menu,
int index,
int hilighted);
Description
Thedraw_menu_item function prints the entrindexof the menumenuon
the screen. Ihilightedis not equal to zero then the entry will be hi-lighted
You must call theerm_load function before attempting to call this function.
Returns

None.

214

menu_handler

Syntax
#include “terminal/terminal.h”
void menu_handler(
struct menu_entry *menu,
int cursor);
Description

Themenu_handler function waits until an entry in the arrayenuis
selected and will return the index of the selected entry. The entry with index
cursoris hi-lighted initially.

The menu can be operated by either the mouse or the keyboard. Menu entrig¢s
are hi-lighted by either moving the mouse cursor over them, or by pressing the
up and down cursor keys. Control is returned to the task by clicking a mouse
button or by pressing the return key.

Two types of menu entry are supported, buttons or fields.

Clicking or pressing return when a button is hi-lighted will immediately return
control to the task. A button can be switched between two states, de-selecte
and selected, by setting the appropriate entry the menu structure. This allow
both push buttons and switches to be implemented. The menu handler does|not
automatically select and de-select buttons, and it is the responsibility of the
calling task to update the menu entry as appropriate for the type of button.

U

Hi-lighting a field and pressing any key other than return will enter the edit
mode and text can be typed into the field. Pressimgter>" or “<escape”
will leave the edit mode and return control to the task.

The elements of the arrayenushould be structures of the typenu_entry .
The array should be terminated with a zero initialized element:

struct menu_entry menu[]={
{4,2,MENU_BUTTON,SLC_ON,SLC_OFF,
CRS_ON,CRS_OFF,0,0,"No"},
{4,2,MENU_BUTTON,SLC_ON,SLC_OFF,
CRS_ON,CRS_OFF,0,0,"No"},
0},

215

Returns

menu_handler

The structurenenu_entry has at least the following members :

int row; screen row to display entry

int col; screen column to display entry

enum menu_type; type of menu entry

unsigned attr_slct_on; text attribute for selected and hilighted

unsigned attr_slc_off; text attribute for selected and not
hilighted

unsigned attr_crs_on; text attribute for not selected and
hilighted

unsigned attr_crs_off; text attribute for not selected and not
hilighted

int select; flag for when entry is selected

int len; length of text field

char *text; text string for entry

Therow andcol entries refer to the screen position at which to display the
entry.

The type can be of eith®fENU_BUTTON or MENU_WRITE, implying
either a button or a text field that can be edited.

The four attributes are the attributes usedtegm_type to display the text of
the menu entry for each of the four conditions.

If the membeselectis not equal to zero then the menu entry is selected and t
attributeattr_slc_offor attr_slc_onis used to display the text when the entry is
hi-lighted or not hi-lighted by the cursor, otherwise the attriladtie crs_onor
attr_crs_off is used.

The stringtextcontains the text that will be displayed as the menu entry. For
writable fields this should point to the text array into which the text should be
written.

The membetenis used to fix the width of the fields that can be edited, if this i
set to zero then the field width will be calculated from the initial string stored
in the arraytext

You must call theerm_load function before attempting to call this function.

Returns the array index of the menu item hi-lighted when the mouse button
clicked or return was pressed.

vas

216

report_error

Syntax
#include “terminal/terminal.h”
void report_error(char *text);
Description
Thereport_error function displays a box with the message in the string
texton the screen together with a button marke@dntinue> ”. The
function waits until the user clicks on the button or presses the return key.
You must call theerm_load function before attempting to call this function.
Returns

None.

217

setup_mouse

Syntax
#include “terminal/terminal.h”
void setup_mouse(void);
Description
Thesetup_mouse function sets up the mouse to work with the menu
system.
You must call theerm_load function before attempting to call this function.
Returns

None.

218

show_ message

Syntax
#include “terminal/terminal.h”
void show_message(char *text);
Description
Theshow_message function displays a box with the message in the string
texton the screen.
You must call theerm_load function before attempting to call this function.
Returns

None.

219

test_key.o

220

Syntax

Description

Returns

free_key

#include “util/test_key.h”
void free_key(void);

Thefree_key function releases the proxy created byrémgister _key
function.

None.

221

register_key

Syntax
#include “util/test_key.h”
int register_key(void);
Description
Theregister_key function creates a proxy that is triggered whenever a
key press occurs. The proxy can be tested for usinggsihekey function.
Returns

Returns one (1) if the proxy was successfully created, or zero (0) if an error
occurred.

222

test _key

Syntax
#include “util/test_key.h”
int test_key(pid_t);
Description
Thetest_key function tests whether a message received from the process
identified bypid, was a proxy created by the functi@yister_key and
triggered as a result of the user pressing a key.
Returns

Returns one (1) if the message was the result of a key press, or zero (0)
otherwise.

223

Appendix A

Software Organization Chart

224

225

Appendix B

Directory Structure

226

radops

bin
doc

errlogs

include

lib

scdlogs

scripts

Src

echo
filer
fit_buffer
gbuf
geo
graph
terminal
util

tables

usr

bin
include

lib normal_scan
src support_lib

test_scan

alter

diagnostic

displays

echo_data

drivers
errlog
fit_buffer
fitacf
lib

raw_write

revision
scheduler

summary

support

tcpip

a_d_test
test_dio
test_echo
test_gbuf

display
fit_buffer
qltp

a_d_driver
gbuf
gps_clock
radops_dio

control_lib
task_lib

control_mod
logo
compress
sd_summary
viptm
close_file
cmp_fit

ctrig
plot_cmp
tplot_cmp
client
echo_datalP
server

227

Appendix C

File List

228

File

List

radops/:

A doc/ make_radar.log tables/

i errlogs/ scdlogs/ usr/

bin/ include/ scripts/

demo.dat lib/ src/

radops/bin:

A cmp_fit* errlog* plot_cmp* test_dio*
i compress* fit_buffer* qltp* test_echo*
a_d_drive* control_mod* fitacf* radops_dio* test_gbuf*
a_d_test* ctrig® fitdisp* raw_write* tplot_cmp*
alter* display* gbuf* schedule* vIptm*
client* echo_data* gps_clock* sd_summary*
close_file* echo_datalP* logo* server*
radops/doc:

A history.radops

i readme.radops
radops/errlogs:

g

radops/include:

A geo/ read_clock.h

i get_fit.h read_fit.h

RCS/ get_status.h read_raw.h
a_d_drive.h graph/ sample.h
dio.h log_error.h station.h
dma-addr.h message.h task_msg.h
dma-alloc.h name.h task_write.h
echo/ option.h terminal/
file_io.h radar_id.h types.h

filer/ raderr.h user_int.h
fit_buffer/ raderr.txt util/

fitdata.h radops.h

gbuf/ radops_version.h
radops/include/RCS:

J v radops.h,v

radops/include/echo:

A v echo_util.h

radops/includef/filer:

J v filer.h

radops/include/fit_buffer:

A v fit_util.h
radops/include/gbuf:
J v gbuf_util.h

radops/include/geo:

J .l geo.h

229

File List

radops/include/graph:

J v graph_lib.h

radops/include/terminal:

A v terminal.h

radops/include/util:

A add_point.h radar_name.h test_key.h
i cnv_time.h read_data.h
radops/lib:

A v control.lib task.lib

radops/scdlogs:

Jod

radops/scripts:

A rad_export start_radar*

i rad_path stop_debug*
debug.sched radops.sched stop_radar*
make_radar* start_debug* tidy_up*

radops/src:

J displays/ ~ fit_buffer/ revision/ support/
i drivers/ fitacf/ shin/ tepip/
alter/ echo_data/ lib/ scheduler/

diagnostic/ errlog/ raw_write/ summary/

radops/src/alter:

A alter.c control.info makefile
i alter.h main.c
radops/src/diagnostic:

A a_d_test/ test_dio/ test _gbuf/

i shin/ test_echo/

radops/src/diagnostic/a_d_test:

J atest.c makefile
i control.info

radops/src/diagnostic/sbin:

A a_d_test* test_echo*
i test_dio* test_gbuf*

radops/src/diagnostic/test_dio:

A control.info dio_test.h test_dio.c
i dio_test.c makefile

radops/src/diagnostic/test_echo:

A control.info test_echo.c
i makefile version.h

230

File List

radops/src/diagnostic/test_gbuf:

A control.info test_gbuf.c
i makefile version.h

radops/src/displays:

A v display/ fitdisp/ qltp/ shin/

radops/src/displays/display:

J control.info main.c
N display.c makefile
colours.h display.h version.h

radops/src/displays/fitdisp:

J build_table.h graphics.c transform.h
. control.info makefile version.h
build_table.c fit_disp.c transform.c

radops/src/displays/qltp:

J control.info plot.c qltp.h
i graphics.c plot_file.c version.h
config.h makefile qltp.c

radops/src/displays/sbin:

A v display* fitdisp* qltp*
radops/src/drivers:

A a_d_driver/ gps_clock/ shin/
i gbuf/ radops_dio/

radops/src/drivers/a_d_driver:

A dt.ext dt_strig.c

i dt.h main.c
control.info dt2828.c makefile
dma-alloc.c dt2828.h pragma.h
dma.dec dt_etrig.c set_clock.c
dma.h dt_int.c version.h
dma_init.c dt_int_handler.c

dt.dec dt_reset.c

radops/src/drivers/gbuf:

A control.info makefile version.h
i gbuf.c pal_table.c

radops/src/drivers/gps_clock:

J bc620.h gps_time.c
i control.info makefile
bc620.c gps_clock.c version.h

radops/src/drivers/radops_dio:

J control.info logger.h tsg.h

i display.c main.c version.h
ASM/ do_op.c main.h watchdog.c
DIO.c do_op.h makefile watchdog.h
DIO.h forbid_freq.c port.h

PI1048.h forbid_freq.h reset.c

bed.c logger.c tsg.c

231

File List

radops/src/drivers/radops_dio/ASM:

A out_tsg.c out_tsg_b.a readme
i out_tsg.l out_tsg_b.l
out_tsg.a out_tsg.o out_tsg_b.o

radops/src/drivers/sbin:

A v a_d_drive* gbuf* gps_clock*

radops/src/echo_data:

J control.info echo.h version.h
N echo.c makefile
radops/src/errlog:

A control.info makefile

i errlog.c

radops/src/fit_buffer:

A control.info makefile

i fit_buffer.c version.h
radops/src/fitacf:

A fitacf.c rang_badlags.c

i fitacf.ext remove_noise.c
acf_preproc.c fitfile.h sd_swab.c
acf_preproc.h ground_scatter.c swap_data.c
badlags.c hardware.c swap_parms.c
calc_phi_res.c inx_close.c transmit_data.c
control.info makefile uname.h
dbl_cmp.c math_handler.c version.h
elev_goose.c more_badlags.c write_header.c
elevation.c my_math.h xfer.c

endian.h noise_acf.c xfer.h

fit_acf.c noise_stat.c

fit_noise.c omega_guess.c

fit_prio.h proc_rec.c

radops/src/lib:

A control_lib/ task_lib/
v slib/

radops/src/lib/control_lib:

A dma-addr.c message.c read_raw.c

i get_fit.c option.c sample.c
a_d_drive.c get_status.c raderr.c task_write.c
control.info log_error.c read_clock.c user_int.c
dio.c makefile read_fit.c

radops/src/lib/slib:

A v control.lib task.lib

radops/src/lib/task_lib:
A

file_io.c makefile read_raw.c
i filer.c message.c sample.c
add_point.c filer.ext pal_table.c terminal.c
cnv_time.c gbuf_util.c radar_name.c terminal.ext
cnvt_coord.c gfont.c read_clock.c test_key.c
control.info graph_lib.c read_data.c
echo_util.c log_error.c read_fit.c

232

File List

radops/src/raw_write:

A compress.h makefile version.h
i control.info raw_write.c
compress.c header.c record.h

radops/src/revision:

A control_mod/ shin/
i logo/

radops/src/revision/control_mod:

A control_mod.c
i makefile

radops/src/revision/logo:

J v logo.c makefile

radops/src/revision/sbin:

A check_id* logo*
i control_mod*

radops/src/sbin:

A alter* errlog* fitacf* schedule*
i echo_data* fit_buffer* raw_write*

radops/src/scheduler:

J execute.c schedule.c version.h
i main.c schedule.h
control.info makefile test.sched

radops/src/summary:

A compress/ sd_summary/
i shin/ viptm/

radops/src/summary/compress:

A buffer.h control.info
i colours.h makefile
buffer.c compress.c version.h

radops/src/summary/sbin:

J compress* viptm*
i sd_summary*

radops/src/summary/sd_summary:

J makefile sd_summary.c
i print_list.c version.h
control.info print_val.c write_header.c

radops/src/summary/viptm:

A control.info read_datrec.c write_header.c
N linreg.c scntabl.c

bigtabl.c Ishell.c version.h

bigtabl.h makefile viptm.c

bigtabl_def.c medfilter.c vlptm.h

233

File List

radops/src/support:
A close_file/ ctrig/ shin/
i cmp_fit/ plot_cmp/ tplot_cmp/

radops/src/support/close_file:

A close_file.c makefile
i control.info version.h

radops/src/support/cmp_fit:

A cmp_fit.c control.info version.h
N colours.h makefile

radops/src/support/ctrig:

J control.info makefile
N ctrig.c version.h

radops/src/support/plot_cmp:

J control.info graphics.c transform.c
.l decode.c makefile transform.h
build_table.c decode.h plot_cmp.c version.h

build_table.h do_filter.c size.h

radops/src/support/shin:

A close_file* ctrig® plot_cmp*
N cmp_fitr fitfile* tplot_cmp*

radops/src/support/tplot_cmp:

J decode.c makefile

i decode.h tplot_cmp.c
control.info graphics.c version.h
radops/src/tcpip:

A client/ shin/

i echo_datalP/ server/

radops/src/tcpip/client:

A connex.h makefile~

i decode_msg.c msg_io.c
client.c fit_data.h read_data.c
connex.c makefile read_data.h

radops/src/tcpip/echo_datalP:

A decode_msg.h msg_io.c version.h
N echo.h msg_io.h

cmp_fith echolP.c socket.c

decode_msg.c makefile socket.h

radops/src/tcpip/shin:

A client* server*
i echo_datalP*

234

File List

radops/src/tcpip/server:

A makefile server.c timer.c

i msg_io.c socket.c version.h
cmp_fit.c msg_io.h socket.h

cmp_fit.h process_msg.c srv_prio.h

radops/tables:

A cnvtabl_h.dat invtabl_t.dat

i cnvtabl_j.dat invtabl_w.dat
bmrtabl_d.dat cnvtabl_k.dat lamda.dat
bmrtabl_e.dat cnvtabl_n.dat logo.img
bmrtabl_f.dat cnvtabl_t.dat map_data
bmrtabl_g.dat cnvtabl_w.dat overlay
bmrtabl_h.dat gb_doppler_gates.dat pal_reg.16
bmrtabl_j.dat hardware.dat pal_reg.256
bmrtabl_k.dat invtabl_d.dat palette
bmrtabl_n.dat invtabl_e.dat qltp_drpl.dat
bmrtabl_t.dat invtabl_f.dat restrict.freq
bmrtabl_w.dat invtabl_g.dat search.freq
cnvtabl_d.dat invtabl_h.dat sigma.dat
cnvtabl_e.dat invtabl_j.dat sigma.dat.b
cnvtabl_f.dat invtabl_k.dat sy_doppler_gates.dat
cnvtabl_g.dat invtabl_n.dat

radops/usr:

A v bin/ include/ lib/ src/

radops/ustr/bin:

A normal_scan.debug* test_scan.debug*
i normal_scanD*

normal_scan* test_scan*
radops/usr/include:

J freq_band.h support.h

i report_error.h sync.h

default.h summary_control.h

radops/ustr/lib:

A v support.lib
radops/usr/src:

A normal_scan/ test_scan/
i support_lib/

radops/usr/src/normal_scan:

A freq_band.h normal_scan.c
i makefile pulse_code.h

radops/usr/src/support_lib:

A forbid_freq.h read_uconts.c

N init_proxy.c summary_control.c
blkin.c makefile support.c
blkin.h new_tsg.c sync.c
control.info phase_decode.c tmseq.c
core_math.c pulse_code.c tmseq.dec
core_math.h pulse_code.h tmseq.ext
define.h pulse_math.c ucont.h

felr.c pulse_math.h version.h

fclr.h radar.c

forbid_freq.c radar.h

235

File List

radops/ustr/src/test_scan:

A Wi makefile test_scan.c

236

