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1 Introduction and historic notes

The Super Dual Auroral Radar Network (SuperDARN) is a global network of over 30
high frequency (HF) radars designed for monitoring high-latitude plasma circulation in
the northern and southern hemispheres (Greenwald et al., 1995; Chisham et al., 2007;
Nishitani et al., 2019). The radars exploit the refractive property of the ionosphere
for HF radiowaves to achieve perpendicularity with the Earth’s magnetic field at high
latitudes. This makes it possible to measure Doppler shift variations in 8–20 MHz
coherent backscatter from field-aligned electron density irregularities in the ionosphere,
which act as tracers for the plasma circulation.

The SuperDARN data are currently distributed to users as range-time arrays of complex-
valued ‘autocorrelation’ (actually, autocovariance) functions (ACFs). These ACFs are
then processed using the Radar Software Toolkit (RST), which is the standard Super-
DARN data analysis software, or with users’ own packages. The RST contains all
routines necessary for converting multi-radar ACF datasets into maps of high-latitude
ionospheric electric potential (SuperDARN Data Analysis Working Group, 2021). The
initial analysis stage involves processing the ACF data from each radar to estimate the
main echo parameters and their respective measurement errors for each range gate and
integration interval. These echo parameters are the Doppler velocity, spectral width,
signal-to-noise ratio, and vertical angle of arrival. The standard method for estimating
these parameters in the RST is a package called FITACF, which performs a series of
least squares fits to the ACF amplitude and phase (Baker et al., 1988; Ponomarenko &
Waters, 2006). Several other methods for processing ACFs have also been developed,
including the FITEX algorithm, which is similar to FITACF but uses a different phase
fitting method to estimate the Doppler velocity (Greenwald et al., 2008; Ribeiro et al.,
2013). SuperDARN ACFs have also been analysed using the multiple signal classifica-
tion (MUSIC) method in order to separate multiple echoes with different velocities and
spectral widths contained within a single ACF (Barthes et al., 1998). Another method
called LMFIT uses a Levenburg-Marquardt algorithm to perform a single model fit to
the complex ACFs (Ribeiro et al., 2013; Reimer et al., 2018) while a two-component
complex ACF fit was utilised to separate ground and ionospheric components in mixed-
scatter echoes (Ponomarenko et al., 2008). The scope of this paper is restricted to the
FITACF algorithm, which has remained essentially unchanged since its inception in
the late 1980s (Baker et al., 1988).

FITACF processing is performed in two stages consisting of (I) preliminary data ‘clean-
ing’ (removal of ‘bad’ data) and (II) extracting physical information from the remain-
ing ‘good’ data. In the original version of FITACF, the first step in the preliminary
data cleaning is to remove ACFs with low signal-to-noise ratio (SNR). After that,
several categories of ‘bad’ ACF lags are identified and removed from the analysis.
They consist of (i) lags affected by blanking the samples coinciding with the pulses’
emission times (Tx-overlap); (ii) lags whose level of cross-range interference (CRI, or
self-clutter, when returns from different pulses in the sequence arrive to the receiver
from different ranges at the same time) exceeds a certain threshold; (iii) lags whose
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power is ‘buried’ in the statistical fluctuations, and (iv) lags that do not conform to
the single-component model (‘bad’ ACF power shape). The last criterion arises from
the main physical assumption underlying the original FITACF algorithms: that any
ACF is characterised by a single spectral maximum (a single average velocity) which
implies a linear ACF phase change with time lag, τ , and decreasing ACF power with
increasing τ .

At the second stage, the phase and power of a ‘cleaned’ ACF are fitted with model
functions in order to estimate line-of-sight (LoS) Doppler velocity, spectral width, and
SNR of the returns together with the related errors. In addition, similar fitting is
applied to cross-covariance functions (XCF) between signals received by the main and
auxiliary (interferometer) arrays in order to estimate the vertical angle of arrival (ele-
vation angle) of the radar returns. A block diagram and a brief description of FITACF
functionality are provided in Appendix A of (Ponomarenko & Waters, 2006). The ob-
tained LoS velocity and spectral width estimates are used for distinguishing between
the ionospheric scatter (IS) and ground scatter (GS) returns based on empirically
derived criteria (e.g. introduction of Blanchard et al., 2009).

By the early 2000s it became apparent that FITACF estimates of spectral width for
the IS component were too large to be attributed to any feasible physical mechanism.
A detailed analysis of the FITACF code revealed an inaccurate treatment of the sta-
tistical fluctuation level that led to overestimating the spectral width. Furthermore,
it was established that the CRI rejection threshold has been too liberal and had to be
supplemented by additional procedures for removing ‘bad’ ACF lags. The necessary
code corrections were proposed by Ponomarenko and Waters (2006) and eventually
implemented in a revised package called FITACF2 (2006–2007).

Yet another revision of the FITACF algorithms was necessitated by the fact that the
SuperDARN plasma drift velocities were generally lower and sometimes even showed an
opposite sign as compared to those measured at the same location by other ground-
based or in-situ instruments (e.g. Xu et al., 2001; Drayton et al., 2005). Another
problem was that FITACF2 was producing unrealistic values of velocity fitting errors,
which prevented accurate comparisons of SuperDARN velocity measurements with
those from other instruments. The issue of underestimated SuperDARN velocities was
resolved relatively quickly by taking into account the significant deviation of iono-
spheric refractive index from unity in the HF frequency range (Ponomarenko et al.,
2009; Gillies et al., 2009, 2010). However, the velocity error problem required a much
more extensive analysis of the FITACF code. By 2013 it was clear that there were sev-
eral inadequacies with the implementation of the least-square fitting algorithms. These
were related mainly to the intuitive rather than textbook treatment of backscatter sig-
nal statistics. These issues were reported in detail at the 2013 SuperDARN Workshop
held in Moose Jaw, Canada, and stimulated creation of SuperDARN Data Analysis
Working Group (DA-WG) charged with maintaining the RST software. By 2015 the
next major revision of the FITACF software, FITACF3, had been developed within the
framework of the DA-WG. As the data processing algorithms had undergone detailed
revision and considerable modification, it became necessary to produce a comprehen-
sive description of the updated package, including the differences between the previous
versions and the statistical justification of the implemented changes.

2 Data acquisition and processing

2.1 ‘Raw’ data

A typical SuperDARN radar collects information by scanning consecutively through
sixteen azimuthal directions (beams) separated by ' 3.5◦ (total coverage of ' 55◦).
Each beam direction is usually sampled in group range from 180 km to '3500–4000 km
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at 45-km steps forming 70–110 range cells (range gates). The integration time is 3.5–
7 s/beam so that the full field of view is scanned within one or two minutes. In
order to fulfill requirements to the maximum measured Doppler frequency shift and
maximum group range, which are mutually exclusive in a mono-pulse emission mode,
the SuperDARN radars every 100 ms emit sequences of 7 or 8 pulses in order to form
a complex autocovariance function (ACF) R(τ) for each range-beam cell (e.g., Villain
et al., 1996; Ponomarenko & Waters, 2006). The pulses in a sequence are unevenly
separated in time in a way that allows to generate a nearly continuous set of unique
time lags separated by a basic step of ∆τ=1.5 or 2.4 ms with the maximum time lag
of τmax '35-40 ms.

The SuperDARN echoes represent narrow-band signals, meaning that the effective
frequency span is much smaller than the wave frequency f . In this case the signal s(t)
can be accurately approximated as a product of a slowly-changing envelope E(t) and
a harmonic oscillation at the carrier frequency ω:

s(t) ' E(t)e−j(ωt+φ0) (1)

where j =
√
−1 and φ0 is an initial phase at t=0. The analytic (complex) signal is

built as
s̄(t) = s(t)− jH (s (t)) (2)

where H(s(t)) represents the Hilbert transform of the original signal. Real and imag-
inary parts of the ACF at each lag are obtained from averaging a cross-product of
responses from a given pair of the pulses in a sequence (i.e., fixed time lag τ) over a
number of pulse sequences, Nave '20–70, (Villain et al., 1996; Ponomarenko & Waters,
2006),

R (τ) = 〈s̄(t)s̄∗(t− τ)〉 = 〈E(t)E(t− τ)〉 e−jωτ = |R(τ)|ejφ(τ) (3)

where ∗ depicts the complex conjugate.

The ACF power (envelope) and phase are defined from the real and imaginary parts
as

|R (τ) | =
√
<2 (τ) + =2 (τ) (4)

and
φ (τ) = tan−1= (τ) /< (τ) (5)

respectively, where
R (τ) = < (τ) + j= (τ) = |R (τ) |ejφ(τ) (6)

As the radar returns represent narrow-band signals, their phase can be accurately
approximated by a single harmonic oscillation with frequency ω, s(t) = Eej(ωt+φ0). In
this case the ACF phase becomes a linear function of frequency

φ (τ) = ωτ. (7)

Most of the SuperDARN radars are equipped with an auxiliary interferometer antenna
array consisting of only four elements and located approximately 100 m in front of or
behind the main 16-element array. The auxiliary array is used for measuring the
elevation angle of the received signal. In order to achieve this, signal samples from two
arrays are combined into cross-covariance functions R×(τ)

R× (τ) = <× (τ) + j=× (τ) = |R× (τ) |ejφ×(τ) (8)

In contrast to φ (τ), the cross-phase φ× (τ) has an additional term (offset) φ0 due to
the spatial separation of the two antenna arrays

φ× (τ) = ωτ + φ0. (9)
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2.2 ACF models and estimated signal parameters

The main assumption made in FITACF about the radar returns is that they are gen-
erated by a single source (scatter volume) filled by plasma irregularities with spatially
uniform characteristics, i.e., possessing the same statistical properties and drifting with
the same average velocity.

The principal estimated parameters are

• signal-to-noise ratio, Q [dB]
• spectral width, W , [m/s]
• line-of-sight Doppler velocity, VLoS [m/s]
• elevation angle, ε [deg]

2.2.1 Lag 0 power and signal-to-noise ratio

The signal-to-noise ratio is calculated from the lag 0 ACF power in decibels as

Q = 10 log10

R(0)−Rn
Rn

= 10 log10

(
R(0)

Rn
− 1

)
, (10)

where Rn is the noise power estimate calculated for each integration time (beam) from
the ten lowest lag 0 ACF power values.

2.2.2 ACF power decay and spectral width

ACF power is assumed to decay with time lag due to either a finite lifetime of the
irregularities or their random motion described by either an exponential or Gaussian
decay model (Hanuise et al., 1993; Villain et al., 1996; Ponomarenko & Waters, 2006;
Ponomarenko et al., 2007). The spectral width W is expressed in the velocity units
(m/s) and corresponds to the half-power level of the model frequency spectrum S(ω).
Through the Wiener-Khinchin theorem, it is inversely proportional to the decay time,
but the exact relationship between these two parameters depends on the functional
form of the power decay model [FITACF tutorial by K. Baker]:

• Exponential decay (Lorentzian spectrum)

|R (τ) | = |R (0) | e−flτ (11)

|S (ω) | = fl

f2l + (ω0 − ω)
2 (12)

Wl =
1

k
fl (13)

• Gaussian decay (Gaussian spectrum)

|R (τ) | = |R (0) | e−f
2
g τ

2

(14)

|S (ω) | =
√
π

fg
exp

(
− (ω0 − ω)

2

4f2g

)
(15)

Wg =
2
√

ln 2

k
fg (16)

Here, fl and fg are measured in Hz and represent the inverse of decorrelation times at
the e-fold level for the exponential and the Gaussian models, respectively. k = 2π/λ
is radar wavenumber in vacuum where λ is the signal wavelength.
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2.2.3 ACF phase and Doppler velocity

The signal frequency can be expressed as a combination of the emission frequency ω0

and the Doppler frequency shift ωD caused by dynamic processes in the ionosphere
which produce variations in the phase path of the radar echoes (e.g., Ponomarenko et
al., 2009; Scoular et al., 2013). Because for SuperDARN radars the signal frequency
is downshifted to ω0, the ACF phase slope is determined solely by the Doppler shift,

φ (τ) = ωDτ. (17)

In the SuperDARN data processing algorithms it is assumed that the radar echoes are
produced by backscatter from electron density irregularities. In this case the Doppler
shift is proportional to the line-of-sight component of the plasma drift velocity, VLoS ,
and the signal wavenumber, k:

ωD = 2kVLoS (18)

so that

VLoS =
ωD
2k

=
∂φ

∂τ

1

2k
, (19)

where ∂φ
∂τ is the ACF phase slope. By convention, a positive Doppler shift (phase

slope) corresponds to plasma movement towards the radar, and a negative Doppler
shift corresponds to plasma movement away from the radar.

2.2.4 Interferometer phase delay and elevation

The auxiliary (interferometer) antenna array makes it possible to estimate the vertical
angle of arrival (elevation angle), ε, measured from the horizontal plane. The eleva-
tion angle is calculated from the phase offset between the signals received by the two
antennas, ∆φ (e.g., Milan et al., 1997):

ε = sin−1

√
cos2 Ψ− φ20

|k|2 d2
, (20)

where Ψ is the azimuth measured from the boresight direction at zero elevation (ε = 0),
and d is the interferometer base. These measurements are subject to the phase aliasing
arising due to the interferometer base being larger than the radar wavelength, d > λ.
As a result, additional assumptions have to be made in order to resolve this ambiguity
(Milan et al., 1997).

2.3 Fitting model functions to observed data

The echo parameter estimates are all obtained through fitting model functions to φ (τ),
φ× (τ) and ln |R (τ)|. Fitting is performed using the least square approach in which
statistical uncertainty is present only in the dependent variable (phase, ACF power)
and the independent variable (time lag) is known exactly (see Appendix for more
detail).

2.3.1 Phase fitting

Phase fitting is based on the assumption of the linear phase dependence on the time lag
(17), which corresponds to a uniform velocity field inside the scatter volume (single
velocity component). Application of (A6) and (A7) to (17) provides the following
expressions for the Doppler velocity estimate:

VLoS =
1

2k

∑N
i=1

τiφi
σ2
φi∑N

i=1
τ2
i

σ2
φi

(21)
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and the respective errors in the phase slope and Doppler velocity are:

δω =
1∑N

i=1
τ2
i

σ2
φi

−→ δV =
1

2k
δω =

1

2k

1∑N
i=1

τ2
i

σ2
φi

(22)

2.3.2 Cross-phase fitting

Fitting the cross-phase φ×(τ) allows determination of the phase offset between the
two arrays, φ0×, which is later used for estimating the elevation angle of the echoes.
While φ0× can be estimated directly from the φ×(τ) at τ = 0, utilising more XCF lags
should provide a more accurate estimate. In contrast to fitting the ACF phase, the
fitted linear model now contains an offset,

φ×(τ) = φ0 + ωDτ.

Applying (A2)–(A5), we obtain the offset estimate and its error as

φ0 =
S
φ×
ττ Sφ× − S

φ×
τ Sτφ×

∆φ×

and

δφ0 =

√
S
φ×
ττ

∆φ×
,

where

Sφ× =

N∑
i=1

1(
σ
φ×
i

)2 , Sφ×
τ =

N∑
i=1

τi(
σ
φ×
i

)2 , Sφ× =

N∑
i=1

φ×i(
σ
φ×
i

)2 ,
Sφ×
ττ =

N∑
i=1

τ2i(
σ
φ×
i

)2 , SτQ =

N∑
i=1

τiφ×i(
σ
φ×
i

)2 ,∆φ× ≡ Sφ×Sφ×
ττ −

(
Sφ×
τ

)2
.

Elevation error dependence on the cross-phase fitting error is obtained from (20) by
propagation of error:

δε =
∂ε

∂φ
δφ0 =

2
(
cos2 ε− sin2 Ψ

) 1
2

kd sin 2ε
δφ0 (23)

2.3.3 Power fitting

The lag 0 SNR, Q0, and spectral width are estimated simultaneously by fitting either
a linear or quadratic model to L(τ) = ln(R(τ)):

• Exponential decay (linear L(τ) model)

L(τ) = L0 − flτ (24)

• Gaussian decay (quadratic L(τ) model)

L(τ) = L0 − f2g τ2 (25)

Application of (A2)–(A5) provides the following estimates for the offset and the slope
of the model with exponential decay

L0 =
SLττSL − SLτ SτL

∆L
(26)

δfl =
SLSLτL − SLτ SL

∆L
(27)
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where

SL =

N∑
i=1

1(
σLi
)2 , SLτ =

N∑
i=1

τi(
σLi
)2 , SL =

N∑
i=1

Li(
σLi
)2 ,

SLττ =

N∑
i=1

τ2i(
σLi
)2 , SτL =

N∑
i=1

τiLi(
σLi
)2 ,∆L ≡ SLSLττ −

(
SLτ
)2
.

The respective fitting errors are

δL0l =

√
SLττ
∆L

=
[
SL −

(
SLτ
)2
/SLττ

]−1/2

(28)

δfl =

√
SL

∆L
=
[
SLττ −

(
SLτ
)2
/SL

]−1/2

(29)

The expressions for the Gaussian model are identical except that τi in the above sums
should be replaced with τ2i .

The lag 0 SNR estimate and its error are obtained by converting ln to log10. The
conversion factors are the same for the Lorentzian and Gaussian models:

Q =
L0

ln 10
(30)

δQ =
δL0

ln 10
(31)

Spectral width errors are conventionally calculated in m/s using conversion factors
between fl,g and Wl,g from (13) and (16):

• Lorentzian

δWl =
1

k
δfl (32)

• Gaussian
For Gaussian decay the fitting error characterises the square of the effective
spectral width δf2g . Conversion to the actual spectral width error can be done
through propagation of errors:

δfg =
∂(fg)

∂(f2g )
δf2g =

1

2fg
δf2g

The spectral width fitting error then is

δWg =
2
√

ln 2

k
δfg =

√
ln 2

δf2g

fgk
(33)

2.4 Statistical variations

In this subsection we will determine standard deviation (SD) values for ACF power and
phase, σR and σφ, required for weighting the least-square sums. Statistical variations
in ionospheric radar echo parameters are produced by a number of sources:

• radio wave scatter by random irregularities of ionospheric plasma
• internal electronic circuitry noise
• atmospheric noise
• radar self-clutter (multi-pulse sounding modes)

In our case the primary contributors are the signal’s own statistical variability and the
self-clutter (cross-range interference).
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2.4.1 Power

To determine the level of statistical variability at each ACF lag, it is convenient to
introduce a normalised ACF,

r (τ) =
R (τ)

R (0)
. (34)

The exact expression for the relative statistical errors (standard deviation divided by
the mean) in the ACF power is

σr (τ)

r (τ)
=

√
1 + r2 (τ)

2Nr2 (τ)
, (35)

where τ is the time lag and N is the number of degrees of freedom (independent
realisations of the random process) (Bendat & Piersol, 2010, eq. 8.109). Importantly,
statistical errors in ACF power depend on the autocorrelation coefficient magnitude.
We are interested in the absolute error, σr, so the respective expression is

σr (τ) =

√
1 + r2 (τ)

2N
(36)

Furthermore, for the ACF power which is the actual measured parameter, one would
need to multiply the above expression by the lag 0 power, R(0):

σR (τ) =

√
1 + r2 (τ)

2N
R(0). (37)

It is easy to see that σR changes between R(0)/
√
N for r = 1 and R(0)/

√
2N for r = 0

(top panel in Fig. 1).

Because FITACF fitting is applied to the natural logarithm of power, the log-power
SD required for weighting can be obtained from linear power as

σL (τ) =
∂L

∂R
σR (τ) =

σR (τ)

R (τ)

2.4.2 Phase

The phase variability is fundamentally different from that of the power by the virtue
of being an arbitrary parameter. As a result, the phase SD value is independent of the
phase value itself. While the phase SD is also determined by the normalised ACF power
(i.e., correlation coefficient) and the number of averages, the functional dependence on
these parameters is qualitatively very different (Bendat & Piersol, 2010, eq. 9.52):

σφ (τ) =

√
1− r2 (τ)

2Nr2 (τ)
=

√
r−2 (τ)− 1

2N
[rad], (38)

In contrast to σr, the phase fluctuation magnitude ranges from 0 at r = 1 to infinity
at r = 0 (bottom panel in Fig. 1).

Importantly, the original FITACF software utilises the same values of SD

σ(τ) ∝ r(τ) (39)

for weighting both power and phase fits.

2.5 Effects of cross-range interference

Cross-range interference (self-clutter) occurs when echoes from different pulses come
to the receiver at the same time. Self-clutter acts as an external noise which increases
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Figure 1. Dependence of standard deviations for power (σr) and phase (σphi) on correlation

coefficient r for typical values of the number of averages N .

the magnitude of statistical fluctuations. Its effects on the power SD are described by
the following expressions from Bendat and Piersol (2010):

σr(τ) =

√
1 + α−2r−2

S (τ)

2N
rS(τ). (40)

Here α is a power correction factor,

α2 =
P 2
S

(PS + PNm)(PS + PNn)
, (41)

where PS = RS(0) is the power of the signal in the analysed range gate and PNm,n
are CRI power values affecting mth and nth pulses in the sequence, respectively.

The same correction can be applied to rS(τ) in the expression for phase SD:

σφ (τ) =

√
α−2r−2

S (τ)− 1

2N
[rad]. (42)

3 Difference between FITACF1–2 and FITACF3 procedures

In FITACF3 the least square fitting technique is implemented in a textbook (optimal)
way with respect to calculating phase and power SD, which is used for weighting
in least-square sums while estimating fitted parameters. In contrast, in the original
FITACF the fitting errors are obtained based on intuitive or predominantly qualitative
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considerations rather than on accurate analytic treatment, and the same applies to
data pre-selection procedures and background noise estimates.

• Weighting in least square fitting:

– FITACF1–2: At any given lag, the same weighting coefficients are used for
both power and phase. They are proportional to the square of ACF power at
this lag.

– FITACF3: At each lag, phase and power SD values are calculated separately
based on theoretical formulas, which also account for CRI level so that dif-
ferent sets of weights are applied while fitting power and phase.

• Fitting errors

– FITACF1–2: Due to the way the weighting was implemented, the fitting
errors were estimated empirically based on the least square ACF power and
phase residuals from the ‘good’ lags.

– FITACF3: The fitting errors are calculated using the textbook formulas for
least-square fitting based on SD estimates and number of averaged pulse
sequences.

• ‘Bad’ lags

– FITACF1–2: There are several kinds of ‘bad’ lags, most of which are deter-
mined using empiric criteria:

∗ Tx overlap (accurate)

∗ Low ACF power level (empiric threshold)

∗ High CRI level (empiric threshold)

∗ ‘Bad shape’ (empiric criteria for non-monotonic power decay)

– FITACF3: There are only two types of ‘bad’ lags removed

∗ Tx overlap (applied to both power and phase)

∗ Low-power lags (applied to ACF power only)

This approach allows more lags to be utilised, especially in phase fitting,
where only Tx-overlap lags are abandoned. The low power lags are removed
from power fitting because they produce a bias towards lower spectral width
and lower lag 0 power due to the non-symmetric distribution of the power
variations around the mean value. These lags are still used in the phase fitting
because the phase variations are distributed symmetrically around the mean
value.

• Mitigating cross-range interference effects

– FITACF1–2: Lags with CRI level exceeding an empirically-determined thresh-
old are completely excluded from the power and phase fitting.

– FITACF3: A conventional (textbook) approach is applied: CRI effects are
included in the power and phase SD estimates so that lags with larger inter-
ference levels make a proportionally smaller contribution to the least-square
sums.

• Phase unwrapping

– FITACF1–2: Conventional 2π phase unwrapping.

– FITACF3: Phase deviations from the fitted linear models are compared for
unwrapped and wrapped data in order to mitigate the ‘Type 1 Echoes’ artifact
observed in low-power ground scatter echoes (presentation at SD2017).

• Noise determination
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– FITACF1–2: The background noise level for each integration time is deter-
mined as an average from 10 lowest lag 0 power values across all available
range gates.

– FITACF3: The original method leads to underestimation of the actual noise
floor by 1-2 dB. In order to mitigate this, a correction techniques is imple-
mented. It is based on expected statistical distribution of noise power which
is defined by the number of averaged pulse sequences.

• Elevation angle estimate

– FITACF1–2: Elevation angle is estimated as an intersect of a linear fit to
the cross-phase. Fitting errors represented as lower and higher elevation
limits based on the observed phase deviations from the fitted linear model
(ELV LOW and ELV HIGH parameters in FIT structure)

– FITACF3: Elevation angle is estimated from both (i) the linear fit to the
cross-phase (used for estimating elevation angle errors) and (ii) a measured
cross-phase offset at lag 0 of the XCF (elevation angle estimates). The lat-
ter provides significantly lower variability at the range gates affected by TX
overlap as compared to the fitted values. A single value of the fitting error is
estimated based on the textbook formulas.

• XCF power fitting

– FITACF1–2: XCF power is fitted in the same way as that of the ACF, and
the obtained estimates of lag 0 SNR and spectral width are stored in the
standard output structure

– FITACF3: No XCF power fitting is performed because the resulting estimates
represent lower-quality replicas of the ACF power fits due to intrinsically lower
SNR.

• Lag zero power data type

– FITACF1–2: Raw lag zero power values are read by the software as integer
data type, resulting in the rounding of lag zero power values down to the
nearest integer.

– FITACF3: Raw lag zero power values are read into the software as double
precision floating point values.

4 Short description of FITACF3 procedures

1. Data preparation

• Reading complex ACFs, XCFs and parameter structures from RAWACF files

• Calculating ACF power and phase

• Calculating the background noise level

The noise level is estimated as the mean of the 10 lowest lag 0 power values
(same as FITACF1–2). A correction factor is then applied based on a Gaus-
sian distribution of the noise and assuming that we use the 10 lowest values
of the distribution (low-power ‘tail’) out of 75 or 100.

• Calculating SNR in dB

• Rejecting whole ACFs with low SNR (< 0 dB)

• Rejecting ACF lags affected by the transmitter emission (Tx overlap, same
as in the old FITACF)

• Calculating integral cross-range interference power for each receiver sample
(i.e. sum of lag 0 powers from all interfering ranges)
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• Calculating parameter α (eq. 41) for each ACF lag. This parameter is used
for estimating levels of power and phase SD at different ACF lags, which are
in turn used for calculating weighting coefficients in the least-square sums.

2. ACF power fitting

• Removing a low-power ‘tail’ from the ACF based on analysing lags with low
CRI levels (1/α < 2): first determining if there is a lag with (P < 2σR), and
if there is one, this and all larger lags are removed.

Note: this is not applied to phase fitting!

• Calculating linear power SD for each ACF lag based on α and number of
averages

• Converting linear power SD into log power SD through propagation of errors

• Fitting linear function to log power using linear SD for weighting as it provides
more accurate estimates of SNR and spectral width.

• Repeating the above fitting but with log power SD as weights for correct
characterisation of SNR and spectral width fitting errors.

• Fitting quadratic function to log power using linear power SD as weights

• Repeating the quadratic fitting with log power SD as weights

• Calculating lag 0 SNR and spectral width for both models, exponential and
Gaussian, together with the respective fitting errors

3. ACF phase fitting

• Initial estimate of the phase-vs-lag slope as a mean for all available pairs of
lags with phase difference < π

• Subtracting the linear phase model from the real data and calculating the
number of 2π ‘wraps’ for each lag

• Initial ‘unwrapping’ of the data by adding the previously calculated number
of ‘wraps’.

• Calculating theoretical estimates of the phase SD based on the fitted expo-
nential power (correlation coefficient), CRI parameter α and the number of
averages. The fitted value for the correlation coefficient is used because the
observed values can exceed lag 0 power due to enhanced statistical fluctua-
tions (e.g., high level of CRI) which will lead to imaginary values of SD in
Eq. 38.

• Fitting a linear function without offset to the phase using inverted SD for
weighting the phase data at different lags. In contrast to the power, here we
use all available lags except those affected by the Tx emission

• Using the obtained slope for a second round of ‘unwrapping’ just in case we
missed a jump or two.

• Repeating the fitting procedure for the re-adjusted data

• Fitting original (‘wrapped’) data.

• Comparing the residual deviations for the original and ‘unwrapped’ phase
and selecting the one with smaller deviations for further processing. In this
way we eliminate the bulk of the false ‘Type 1’ echoes (for more detail see
our ‘Type 1’ presentation at SD’17)

• Calculating the line-of-sight velocity values and respective fitting errors.

4. XCF phase fitting

• Calculating the power and phase for the interferometer data (XCFs)

• Unwrapping the XCF phase in the same way as for the velocity except that
the phase model is now having an offset (lag 0 XCF phase as an initial guess).
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• Fitting a linear function with an offset to the ‘unwrapped’ data using the
same weights as for the velocity (although, we need to use the normalised
XCF power here)

• Repeating the ‘unwrapping’ using the fitted slope and offset values

• Second round of fitting a linear function with an offset to the adjusted data

• Calculating the elevation angle from the fitted lag 0 phase (offset) for com-
parison and for estimating the related errors

5. Recording the obtained estimates into FITACF files.

Appendix A Least-Square Fitting (textbook formulas)

Least-Square fitting is performed through minimising a sum of squared differences
between the observed, y(x), and modelled, f(x), values where each term is weighted
by the respective SD σy for a given value of x,

χ2 =

N∑
i=1

(
yi − f(xi)

σyi

)2

. (A1)

Following Section 15.2 of Press et al. (1996), for a straight line with an offset,

y = a+ bx,

minimisation of the least-square sum provides following expressions for the fitted pa-
rameters and the respective fitting errors are:

• offset

a =
SxxSy − SxSxy

∆(x, σy)
, (A2)

δa =

√
Sxx

∆(x, σy)
, (A3)

• slope

b =
SSxy − SxSy

∆(x, σy)
, (A4)

δb =

√
S

∆(x, σy)
, (A5)

where

S =

N∑
i=1

1

σ2
yi

, Sx =

N∑
i=1

xi
σ2
yi

, Sy =

N∑
i=1

yi
σ2
yi

,

Sxx =

N∑
i=1

x2i
σ2
yi

, Sxy =

N∑
i=1

xiyi
σ2
yi

,∆(x, σy) ≡ SSxx − S2
x.

For the simplest case of a straight line without an offset (a = 0),

y = bx,

one can easily find that

b =
Sxy
Sxx

, (A6)

δb =
1√
Sxx

. (A7)
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The above expressions are also applicable to the quadratic function with the offset,

y = a+ bx2,

one just needs to replace xi with x2i .
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