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Introduction

 Multi-pulse Technique and ACFs
– Why ACFs?
– Bad and missing lags

 Basic Theory of FITACF
 Basic Fitting Technique

– Getting the Power and Width
– Getting the Velocity

 Dealing with Noise
 Error Estimation
 Future Directions



Consider a Double Pulse

 By comparing the relative phase of the signal received 
at time t0 (signal received from first pulse) with phase 
received at time t0 + (signal from second pulse) we 
can determine by much much the irregularities have 
moved in time 



v



How do we integrate over 
many pulse sequences?

 Let S11 be the complex signal received from pulse 
sequence #1, pulse 1.  Let S12 be the signal received 
from pulse sequence #1, pulse 2.
– S11 = A1exp(i1)          S12 = A1exp(i1 + i

 Let S21 be the complex signal received from pulse 
sequence #2, pulse 1.  Let S22 be the signal received 
from pulse sequence #2, pulse 2.
– S21 = A2exp(i2)          S22 = A2exp(i2 + i

We can’t simply sum the two because of the random phase.



Double Pulse ACF
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Since the ACF is independent of the random phase we
can sum ACFs from different pulse pairs to get a
sensible result.



Range Aliasing

 Suppose our two pulses are separated by time 
 Suppose we also have two regions of 

backscatter and they are separated by a 
distance, d=c/2

 Then, we will get a signal back from range #2 
scattering pulse #1 at the same time as we get a 
signal from range #1 scattering pulse #2.



Range Aliasing and ACFs
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What about a triple pulse?


Obs. 
T=0

Obs. 
T=

Obs. 
T=2
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This represents the general case.  Any time 
we make a measurement we can be receiving 
signals from all three pulses if there is scatter 
coming from all possible ranges.



R1 for triple pulse
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Three Pulse Pattern
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ACF from Multi-pulse 
Pattern
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Repeated Pulse vs Multi-
Pulse Pattern

 Sequence of repeated pulses gives you all the different lags of 
an ACF  - BUT you get range aliasing for every lag and it 
does NOT go away.

 Multi-pulse pattern solves the range aliasing problem  - BUT
– You cannot have every lag UNLESS
– You have redundant lag pairs, which causes range aliasing again.
– It only solves the problem to the extent that terms with random phase go 

away as we average a large number together.

 We try to minimize redundancy, but this means we always 
have missing lags.



Bad Lags (1)
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Bad lags (2)

 General form of a lag in an ACF from a single pulse 
sequence is:
– R = A2exp(i+ AB exp(random phase)

 When we average ACFs from N pulse sequences
– R = A2exp(i + AB/
– If the power from range B is significantly greater 

than the power from range A, then we get 
contamination of the ACF from unwanted power at 
range B, even though the contamination is 
decreasing as 1/ 



Bad Lags (3)

 An ACF characterized by a single frequency should 
have its maximum value at lag-0 and each successive 
lag should have pwr(n) pwr(n-1).
– Allow for the possibility of a small increase due to the 

effect of noise.
– If condition is not met then identify the lag as a bad lag.

» The presumption is that the lag has been affected by a 
burst of noise.

» But it might really be due to a failure of the assumption 
that the ACF is characterized by a single frequency.



Finally – we come to
FITACF

 Goose Bay Radar was built in Oct. 1983
 In 1984 Christian Hanuise developed the first code to 

attempt to determine the velocity by fitting all the lags 
of an ACF.

 1985 – after Hanuise returned to France, improved 
versions of Hanuise’s code were developed.

 1985 or 86? The first version of FITACF was 
produced.
– Improved flexibility
– Improved error estimation
– Introduction of estimation of spectral width



Basic Theory of FITACF

 The ACF can be characterized by a single 
frequency

 The ACF will decorrelate as the lag increases. 
We will model the decorrelation two different 
ways:
– Power ~ exp(-t)      Log(pwr) decreases linearly
– Power ~ exp(-2t2)   Log(pwr) decreases quadratically

 Convolution Theorem: Fourier transform of an ACF is 
the power spectrum.



Example of a perfect ACF
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Why bother with the 
ACF?  Why not just work 
with the power spectrum?

 Getting the velocity (frequency) is difficult in the power 
spectrum.  Unless the true frequency is an exact value of the 
discrete Fourier transform, you have leakage from the central 
peak to other points in the FFT.  

 The leakage problem also makes it difficult to accurately 
determine the spectral width from the spectrum.

 We always have missing lags and often have bad lags.  This 
complicates the calculation of the power spectrum from the 
ACF and makes interpretation of the power spectrum more 
difficult.



ACF Model
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Fitting Technique

 Conceptually things are now straightforward.
– Take Log(power) and do a Least Squares Fit

» Log(pwr) = A – t      for Lambda Model
» Log(pwr) = A – t2    for the Sigma Model

– Calculate true phase at each lag and do a Least Squares FIT 
with condition that phase at lag-0 must be 0.

» t

 Bad or missing lags in the ACF are simply ignored in 
the fitting process.

 No leakage problems like there are when dealing with 
the power spectrum.



The lambda power spectrum
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We now multiply the numerator and denominator by the complex 
conjugate of the denominator and then take the real part of the 
result.’

This gives us the power spectrum as a function of and .

This is a Lorentzian power spectrum with a maximum at .  To 
determine the full width at half-max, simply solve for the value of 
 that gives R() = 1/.
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We do the same thing to get the spectrum and spectral width for the 
Gaussian decay model.

To integrate this we look for a quadratic such that 

This gives us
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We can then write the power spectrum as:

Then perform the variable substitution: x = t-q, dx = dt

Substituting in the value of q2 we then have
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Getting Physical 
Parameters from 
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Converting from Frequency to velocity

The relation between the Doppler shift and the velocity is 
usually given by:

However, for a Doppler shift produced by a reflection from a 
moving target, the effective velocity is twice the true velocity so 
we have:                                   Now,  is the angular frequency 

of the Doppler shift, so 2f, and we then have (next page)
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Velocity and width in 
terms of velocity


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 Where v is velocity in m/s, c is speed 

of light, f is transmitter frequency in 
Hz,  is radial Doppler shift 
frequency from the phase fit.
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The same conversion factor is used to convert the spectral 
width from frequency to velocity.



Complications

 Should we use lags where the power in the 
ACF is less than the noise level?  NO.

 What IS the noise level?
 Is the error associated with the measurement of 

each lag the same?  If not, how do we weight 
the points when doing the fit?

 How do we determine the true phase from the 
measured phase?



Determining the True 
Phase

 Measured phase is between +  and – 
 In the ACF example it was obvious where the 

jumps in phase occurred but
– When we add noise it’s not so obvious
– When we don’t have all the lags it’s not so obvious

 We have to assume that the phase for lag-1 is 
between –and +.

 Start with an initial guess for and do the fit 
one point at a time.  Predict phase and then 
adjust.



Guess, Predict, Adjust

 How do we make the initial guess?
– The basic assumption is that between neighboring lags (e.g. 

lag-4 to lag-5) the phase change must lie between –and 
+

– Find all good 1-lag pairs and calculate the average phase 
difference.  Then 0= <>/.

 Go lag by lag:
– Predict the true phase at lag-n from n-1(n)
– Compare the predicted phase with meas + 2k

» Adjust k so that the result lies with +/-  of the predicted value.  
This is the true value of the phase.

– Use the new true value of to calculate n (least squares 
fit).



Check and Iterate

 If you have a reasonably good guess for the 
initial value of , you are not terribly bothered 
by missing or bad lags.  This is because you are 
allowed to jump the phase up (down) by more 
than one multiple of 2.

 Check the final result for  by redoing the fit 
using that value of  as the initial guess. 
– Iterate until you get a new value of  that is the 

same as the previous value.  Usually this only takes 
one pass. 



Dealing with Noise

 Types of noise
– Random cosmic noise

» We have never really investigated the statistical properties of this 
cosmic noise. This would be really good to do!

– Bursts from other transmitters
– CW noise from other transmitters

 Is there a noise ACF that can be removed?
– If we find CW noise from other transmitter it may be 

possible to (partially) remove the signal

 Noise and decorrelation
 Weighting the fits



Cosmic Noise

 Things that would be nice to know about the 
cosmic noise (but we don’t)
– Does the power truly behave like a random 

variable?  If so, what is it’s distribution?
– Does the measured phase of the noise behave like a 

random variable?  What is it’s distribution?
– Is there a clear diurnal variation in the noise?
– Can the radars be used as oblique riometers by 

measuring the noise?



Determining the noise 
characteristics

 During Clear Frequency Search we determine a noise level characteristic of 
the clearest frequency during the brief period of the search.  That value is 
saved in the NOISE parameter in the parameter block.

 In FITACF
– Find the average lag-0 power for the 10 lowest power ranges.  We call 

these 10 lowest power ranges the “noise range gates.”  This value is 
saved in the parameter “skynoise” in the FIT files.

– Find the average noise from all lags (not just lag-0) for the noise range 
gates.  This value is called the “noise_pwr” and is used in the fitting 
process.

» Compare this value and its variance to the skynoise to see if there appears 
to be a coherent signal present in the noise range gates.  If so, we assume 
that a CW transmitter has contaminated all range gates.

» If there is a coherent noise signal, calculate the average ACF for all noise 
range gates and then subtract that “noise ACF” from each ACF.

» If you subtract a noise ACF, recalculate all the noise parameters.



Noise and Decorrelation

 If you could pick out the true ACF from a single pulse 
sequence, there would hardly be any decorrelation.  The 
decorrelation comes about because parameters such as 
frequency and spectral width have some random character and 
change from pulse sequence to pulse sequence.

 The ideal ACF is only achieved in the limit of a large number 
of pulse sequences in the average.

 When looking at the Power fit, there is an artificial noise level 
determined by the lag-0 power, the random characteristics of 
frequency and spectral width, and the number of pulse 
sequences.  This is often higher than the true noise level.
– We may not use the same number of lags in the phase fit and the power 

fit.



Weighting the Phase Fit

 You can show that the error in the phase measurement 
at any given lag is proportional to Noise/Signal.
– This implies that the phase fit should be weighted by the 

power at each lag (that is, the signal strength at that lag).

 The error in the power at any given lag is constant 
(proportional to the Noise level), 
– BUT when we take the log of the power you again find that 

the error is proportional to N/S (assuming S>>N).
– So again, the power fit should be weighted by the power at 

each lag.

NOTE: the weighting is by the actual power in the lag, NOT the 
log of the power.



Error Estimates

 The method for estimating the error in fitted 
parameters from a least-squares fit is well 
established and can be found in many books.  
The error estimate for a 2-parameter linear fit 
(such as the power fit) is obtained from an 
overall estimate of the error in the fit and the 
covariance matrix.

 Very straightforward for the power fit
 We have a complication, however, with the 

phase fit.



Error in the phase fit
(velocity error)

 If we had no 2 ambiguities the process would be just 
as straightforward as in the power fit.

 Suppose when we calculate our initial guess for  we 
find that the variance in the 1-lag phase differences is 
large.
– It is then, very likely that we will have a small value of .
– If the predicted value at each lag for the phase always lies 

within +/- we will get a small velocity with a somewhat 
large error (comparable to the velocity estimate itself) but 
the true velocity may be a much larger value.



Initial Guess for 
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Final estimate of 
frequency error

 We now have two different errors related to the 
frequency.
– Error estimate on the initial guess
– Error estimate on n, from the phase fit

 Combine the two using the geometric mean

  n  0



Is there a better way?

 If we have a good initial guess then that implies we are putting 
the 2’s in the right place.  And that means we should be using 
the error estimate from the phase fit and not the geometric 
mean of the error in the initial guess and the phase fit error.

 Suppose we re-did the fitting process but used as our initial 
guess ?  (and similarly for 
– If, after going through this process we ended up with the same final 

value of  then our initial guess was “right” and we should use the error 
estimate from the phase fit.

– If they aren’t the same, then let   

 The downside of this is that we triple (at least) the amount of 
computer time needed for the phase fit.

Recommendation:  Some one should try this using real data from DAT files.



Future?

 Dealing with mixed frequencies (particularly 
ionospheric scatter + ground scatter)
– MUSIC? (Andre and Villain)
– Subtract mean value of Re(ACF)? (only for ground 

scatter, causes errors when ionospheric velocity is 
low, could mess up spectrum)

– Fourier transform?
» Identify ranges that have the problem
» Remove unwanted peak(s)
» Transform back

Can we do this reliably?

Unwanted by whom?



More for the future

 Improved recognition of ground scatter
– FITACF has changed a lot since our definition of ground 

scatter was made.

 FITACF treats each range completely independently?  
Could we improve things by including information 
from neighboring ranges?  What about neighboring 
beams?
– Would we have to analyze data differently depending on 

which direction the radar was oriented?
– If we try to use information from neighboring beams, how 

do we handle non-standard scan modes?



Dealing with raw data?

 Currently the only way we deal with raw data 
is by calculating ACFs.  Shouldn’t we 
investigate alternate approaches?

 We should have some truly RAW data – in 
other words, the actual samples from the A-D 
converter, totally unprocessed.



Conclusion

FITACF

It’s been a good approach for many years, 
but that doesn’t mean improvements can’t be 

made.  But improvements should be done 
very carefully and tested thoroughly before 

they are implemented.


