
Data Analysis Working Group

Task 3. Cumulative cross-range interference.

Author: Pasha Ponomarenko
Date: 18 November 2013

1. Description
Cross-range interference (CRI) results from the multi-pulse mode of operation when at
any given time the received signal represents a combination of returns from different
pulses at different ranges. At a given range, different pairs of receiver samples are used to
calculate different ACF lags. Furthermore, different samples are affected by CRI from
different sets of range gates so that the CRI effect should be estimated for each sample
separately.
For example, the same sample can be used as a pulse #2 for one range gate but as a pulse
#5 for another. In each case, the contribution from the desired range is rectified through
averaging the cross-products of two samples (i.e. ACF lags). Coherent returns from the
“correct” range are present in both samples while incoherent CRI returns come from
different sets of ranges so that their contribution to the overall ACF variance decreases
with increasing number of averaged pulse sequences ~1/sqrt(N). Therefore, a substantial
averaging is required for statistically reliable estimates of ACFs. Currently, N~25-30 but
this number can still be insufficient for negating a large-amplitude CRI.

In order to remove the data with excessive CRI levels, the FITACF package
compares lag 0 power from the analysed range, P0_check, to that from each of the
interfering ranges which contribute to CRI at this particular lag, P0_i. Currently, the
acceptable CRI level is considered to be when P0_check > P0_i, i.e. each of the
interfering ranges has lag 0 power lower that from the checked range. If this condition is
not met, then this particular sample is marked as “bad”, and all related ACF lags (i.e. its
cross-products with other pulses) are excluded from further analysis (fitting).

2. Implications
The problem here is that there is usually more than one range gate contributing to CRI for
a particular pulse at a given range gate. These components are incoherent so their effect is
proportional to the cumulative power from all interfering ranges. Therefore, the CRI level
is generally underestimated by the current software, sometimes significantly.

3. Proposed actions
Instead of the gate-by-gate power comparison, we have to estimate a cumulative effect
from all interfering ranges, i.e. to compare lag 0 power from the analysed range gate with
a sum of lag 0 powers form all ranges contributing to CRI for a given receiver sample.
This can be done by following changes in the respective C code, rang_badlags.c, which
are highlighted by yellow (the original code is appended to this document):

104 void lag_overlap(int range,int *badlag,struct FitPrm *ptr) {
105
106 int ck_pulse;
107 int pulse;
108 int lag;
109 int ck_range;
110 long min_pwr;
111 long pwr_ratio;
112 int bad_pulse[PULSE_SIZE]; /* 1 if there is a bad pulse */
113 int i;
114 double nave;
115 double tot_cri; /* cumulative CRI power */
116 --range; /* compensate for the index which starts from 0 instead of 1
*/
117
118 nave = (double) (ptr->nave); /* Number of averaged pulse sequences */
119 /* Filling in bad pulse array with zeroes */
120 for (pulse = 0; pulse < ptr->mppul; ++pulse)
121 bad_pulse[pulse] = 0;
122 /* Cycle for checked receiver samples (pulses) at a given range */
123 for (ck_pulse = 0; ck_pulse < ptr->mppul; ++ck_pulse) {
124 tot_cri=(double) 0; /* Zeroing total CRI power for the next pulse
sample */
125 for (pulse = 0; pulse < ptr->mppul; ++pulse) {
126 ck_range = range_overlap[ck_pulse][pulse] + range;
127 if ((pulse != ck_pulse) && (0 <= ck_range) &&
128 (ck_range < ptr->nrang))
129 tot_cri=tot_cri+ptr->pwr0[ck_range]; /* Accumulating CRI power
*/
130 }
131 pwr_ratio = (long) 1; /* Power ratio threshold */
132 min_pwr = pwr_ratio * ptr->pwr0[range];
133 if(min_pwr < tot_cri) /* Comparing lag 0 power of the checked
sample (pulse) with cumulative lag 0 power from all interfering ranges */
134 bad_pulse[ck_pulse] = 1;
135 }
136
137 /* mark the bad lag */
138 for (pulse = 0 ; pulse < ptr->mppul; ++pulse) {
139 if (bad_pulse[pulse] == 1) {
140 for (i=0; i < 2 ; ++i) {
141 for (lag = 0 ; lag < ptr->mplgs ; ++lag) {
142 if (ptr->lag[i][lag] == ptr->pulse[pulse])
143 badlag[lag] = 1; /* 1 for bad lag */
144 }
145 }
146 }
147 }
148 return;
149 }

4. Remarks:

I did some basic testing for this task. First, I used AJ’s simulator to check if the
magnitude of the CRI from multiple ranges is indeed determined by the sum of the

respective lag 0 powers, and I found this assumption to be consistent with the simulation
results. Second, I applied the modified code to two weeks of real data (Rankin Inlet, 01-
16 January 2012). I analysed ionospheric scatter only with SNR (“power”) exceeding 6
dB. As expected, the modified code produced lesser amount of valid ACFs (~92% as
compared to the current procedure) but lower median velocity error (95% of the
“unmodified” value).

 Appendix

 1 /* rang_badlags.c
 2 ==============
 3 Author: R.J.Barnes & K.Baker & P.Ponomarenko
 4 */
 5
 6 /*
 7 Copyright 2004 The Johns Hopkins University/Applied Physics Laboratory.
 8 All rights reserved.
 9
 10 This material may be used, modified, or reproduced by or for the U.S.
 11 Government pursuant to the license rights granted under the clauses at
DFARS
 12 252.227-7013/7014.
 13
 14 For any other permissions, please contact the Space Department
 15 Program Office at JHU/APL.
 16
 17 This Distribution and Disclaimer Statement must be included in all
copies of
 18 "Radar Software Toolkit - SuperDARN Toolkit" (hereinafter "the
Program").
 19
 20 The Program was developed at The Johns Hopkins University/Applied
Physics
 21 Laboratory (JHU/APL) which is the author thereof under the "work made
for
 22 hire" provisions of the copyright law.
 23
 24 JHU/APL assumes no obligation to provide support of any kind with regard
to
 25 the Program. This includes no obligation to provide assistance in using
the
 26 Program or to provide updated versions of the Program.
 27
 28 THE PROGRAM AND ITS DOCUMENTATION ARE PROVIDED AS IS AND WITHOUT ANY
EXPRESS
 29 OR IMPLIED WARRANTIES WHATSOEVER. ALL WARRANTIES INCLUDING, BUT NOT
LIMITED
 30 TO, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE ARE
 31 HEREBY DISCLAIMED. YOU ASSUME THE ENTIRE RISK AND LIABILITY OF USING
THE
 32 PROGRAM TO INCLUDE USE IN COMPLIANCE WITH ANY THIRD PARTY RIGHTS. YOU
ARE
 33 ADVISED TO TEST THE PROGRAM THOROUGHLY BEFORE RELYING ON IT. IN NO
EVENT
 34 SHALL JHU/APL BE LIABLE FOR ANY DAMAGES WHATSOEVER, INCLUDING, WITHOUT
 35 LIMITATION, ANY LOST PROFITS, LOST SAVINGS OR OTHER INCIDENTAL OR
 36 CONSEQUENTIAL DAMAGES, ARISING OUT OF THE USE OR INABILITY TO USE THE
 37 PROGRAM."
 38
 39
 40
 41
 42

 43
 44 */
 45
 46 /*
 47 $Log: rang_badlags.c,v $
 48 Revision 1.5 2007/02/02 21:40:15 code
 49 Changed cross-range interference threshold (pwr_ratio) from 0.3*nave to
1 (line
 50 122 from version 1.4)
 51 and commented out declaration of MIN_PWR_RATIO = .3
 52
 53
 54 Revision 1.4 2003/09/13 22:39:29 barnes
 55 Modifications to use the new data structures.
 56
 57 Revision 1.3 2001/06/27 20:48:31 barnes
 58 Added license tag
 59
 60 Revision 1.2 2001/01/29 18:11:53 barnes
 61 Added Author Name
 62
 63 Revision 1.1 1998/06/05 19:56:46 barnes
 64 Initial revision
 65
 66 */
 67
 68 #include <stdio.h>
 69 #include <math.h>
 70 #include "limit.h"
 71 #include "fitblk.h"
 72
 73 /* #define MIN_PWR_RATIO .3 */
 74
 75 static int range_overlap[PULSE_SIZE][PULSE_SIZE];
 76
 77 /* r_overlap sets up the table r_overlap which keeps track of the
 78 * ranges which might cause interference.
 79 */
 80
 81 void r_overlap(struct FitPrm *ptr) {
 82 int ck_pulse;
 83 int pulse;
 84 int tau;
 85
 86 int diff_pulse;
 87
 88 /* define constants */
 89 tau = ptr->mpinc / ptr->smsep;
 90
 91 for (ck_pulse = 0; ck_pulse < ptr->mppul; ++ck_pulse) {
 92 for (pulse = 0; pulse < ptr->mppul; ++pulse) {
 93 diff_pulse = ptr->pulse[ck_pulse] -
 94 ptr->pulse[pulse];
 95 range_overlap[ck_pulse][pulse] = diff_pulse * tau;
 96 }
 97 }
 98 return;

 99 }
100
101
102 /* lag_overlap marks the badlag array for bad lags */
103
104 void lag_overlap(int range,int *badlag,struct FitPrm *ptr) {
105
106 int ck_pulse;
107 int pulse;
108 int lag;
109 int ck_range;
110 long min_pwr;
111 long pwr_ratio;
112 int bad_pulse[PULSE_SIZE]; /* 1 if there is a bad pulse */
113 int i;
114 double nave;
115
116 --range; /* compensate for the index which starts from 0 instead of 1
*/
117
118 nave = (double) (ptr->nave);
119
120 for (pulse = 0; pulse < ptr->mppul; ++pulse)
121 bad_pulse[pulse] = 0;
122
123 for (ck_pulse = 0; ck_pulse < ptr->mppul; ++ck_pulse) {
124 for (pulse = 0; pulse < ptr->mppul; ++pulse) {
125 ck_range = range_overlap[ck_pulse][pulse] + range;
126 if ((pulse != ck_pulse) && (0 <= ck_range) &&
127 (ck_range < ptr->nrang)) {
128 pwr_ratio = (long) 1; /*pwr_ratio = (long) (nave *
MIN_PWR_RATIO);*/
129 min_pwr = pwr_ratio * ptr->pwr0[range];
130 if(min_pwr < ptr->pwr0[ck_range])
131 bad_pulse[ck_pulse] = 1;
132 }
133 }
134 }
135
136 /* mark the bad lag */
137
138 for (pulse = 0 ; pulse < ptr->mppul; ++pulse) {
139 if (bad_pulse[pulse] == 1) {
140 for (i=0; i < 2 ; ++i) {
141 for (lag = 0 ; lag < ptr->mplgs ; ++lag) {
142 if (ptr->lag[i][lag] == ptr->pulse[pulse])
143 badlag[lag] = 1; /* 1 for bad lag */
144 }
145 }
146 }
147 }
148 return;
149 }

